Slide 1: Title (about 0:40)

Good morning, and thank you for the introduction. My name is Kenta
Kasai from the Institute of Science Tokyo. Today | will talk about
breaking the orthogonality barrier in quantum LDPC codes, with a focus
on a concrete construction and decoding results. To ensure accuracy and
proper phrasing, | will read from a prepared script. [Next slide.]

Slide 2: Motivation: Classical vs Quantum
LDPC (about 1:20)

In classical coding, sparse random graphs and large girth give us strong
BP performance and large minimum distance. Density evolution tells us
BP performance is highly sensitive to degree distributions. For regular
degree at least three, the minimum distance can scale linearly with block
length. So it is natural to ask if we can transfer this recipe to quantum
codes. The obstacle is the CSS orthogonal constraint which couples the
two matrices. Here a prime () denotes transpose. If we enforce
orthogonality and regularity naively, we often get short cycles and small
distance bounds. Our goal is to keep classical LDPC structure without
paying that price. [Next slide.]

Slide 3: Problem: Row Removal Creates
Logicals (about 1:30)

We start from a parent construction, abstracted from Hagiwara—Imai
codes and bicycle codes, which makes degree distributions easy to control.
In this construction, we first use the block-circulant structure to build
fully orthogonal parent matrices HX and HZ with zero coding rate. To
increase the rate, we remove some rows and keep only the active parts
H and H,. The removed rows are the latent matrices, written I;TX, ]EIZ



~

(i.e., H). But full orthogonality then forces the active—latent blocks to be
orthogonal as well. So removed rows can sit inside the code spaces and
become logical operators, i.e., they lie in the normalizer but not in the
stabilizer. As a result, the minimum distance was bounded by the row
weight. This is a structural limitation we want to avoid. [Next slide.]

Slide 4: Design Principle (about 1:20)

The core idea is simple: enforce orthogonality only on the active part.
We require HXH/Z = 0, but we intentionally keep the latent part
non-orthogonal. This prevents small-weight removed rows from becoming
logicals. We define latent-based distances as the minimum weights of
logical operators supported on the latent-row spans (for X and 7).
These distances isolate logicals induced by the latent rows, so they
directly measure the risk created by row removal. Then we design the
construction to make these distances large. [Next slide.]

Slide 5: Generalized Hagiwara—Imai
Construction (Example J=3, L=12) (about
2:10)

We now present the construction for the proposed codes. First, J and L
denote the column and row weights. We prepare L /2 permutation
matrices F; and Gj of size P. In the experiments shown later, we take

P =768. We build Hy, H, by arranging F; and G so that both the
left and right halves are block-circulant. We use the top .J block rows of
lfIX, ﬁZ as the active matrices, and the remaining block rows as the
latent matrices. Here a prime (') denotes transpose, or equivalently the
inverse for permutation blocks. This structure reduces the parent-product
to a small set of blocks ¥ .. Each W is a sum of L /2 swapped-order
pairs, in other words, commutator terms, so commutativity between F;



and G; controls when W, becomes zero. The key idea is to control
commutativity between F; and G so that the top-left block is zero, i.e.,
the active blocks are orthogonal, while the off-diagonal blocks are
nonzero, i.e., the active—latent products are not. On the next slide, we
show how to enforce its orthogonality. [Next slide.]

Slide 6: Setting A and I' (about 1:30)

Look at the parent-product on the left. In the top-left 3 x 3 active block,
W, does not appear. Recall that each W, is a sum of commutator terms.
On the right, | color the (¢, j) pairs in I' by the same W, colors; these
are exactly the pairs that must commute to force the corresponding W
to zero. Therefore, to make the active product zero, it needs to enforce
commutativity on I'. Pairs outside I' are free to choose. To avoid the
case where everything commutes, we need 4J < L. This means the
quantum coding rate is at least 1/2. [Next slide.]

Slide 7: Affine Permutation Matrices
(about 1:20)

Here is the search story. We start with three requirements: commute on
I', keep at least one non-commuting pair outside I', and avoid short
cycles in the active Tanner graphs. An exhaustive search over all
permutation matrices is combinatorial. So we restrict the search space to
a structured family that makes the commutativity and cycle checks
cheap. This turns the problem into a practical sequential construction.
We have released the construction software on GitHub. [Next slide.]



Slide 8: Example: Proposed Code
Construction (about 1:00)

Here is one concrete instance. With P = 768, the construction gives a
girth-8, (3, 12)-regular code with parameters [[9216, 4612, < 48|].
Earlier constructions were capped at distance 12 by row-weight bounds,
but in this instance we find no logicals achieving that bound. We can
explicitly build weight-48 logical operators, so d. .. < 48 is an upper
bound. For this instance, we can prove dg(at) = dgat) — 48: | omit the
proof here. To prove d ; = 48, we would also need to rule out
small-weight operators in the remaining range. We cannot rule out
smaller logicals yet, but in deep error-floor experiments we saw no logical
failures, so we expect the true distance is close to 48. [Next slide.]

Slide 9: Decoding Algorithm (BP +
Post-Processing) (about 1:20)

Let me describe the decoder. First, we run joint BP on Hy and H,,
exploiting X /Z correlations. Most frames are corrected by BP alone, but
occasionally BP stalls with a small residual. When the number of
unsatisfied checks is small (e.g., < 10), we invoke post-processing. In
post-processing, we estimate a set of suspicious bits K using OSD,
flip-history, or a small library of elementary trapping sets, and form the
residual syndrome by removing the complement contribution. If the
solution space is low-dimensional and yields a small-weight update, we
apply it; otherwise we keep the BP output. We have released the
decoder software on GitHub. [Next slide.]



Slide 10: Performance Highlight (about
1:20)

Let me highlight the main result. We constructed a girth-8,
(3,12)-regular code with these parameters. With joint BP and
post-processing, the FER reaches 10~° over depolarizing channels with
physical error rate p = 4%. At p = 0.04, we also begin to see early
signs of an error floor. However, the remaining decoding failures leave
only a small number of unsatisfied checks, which suggests they may be
correctable by expanding the ETS library. Most importantly, the observed
BP performance closely matches the DE benchmark. Here the DE
benchmark is computed for a random non-orthogonal (3,12) code under
the cycle-free assumption. This figure shows the corresponding FER
curve. [Next slide.]

Slide 11: Conclusion (about 1:00)

To summarize: active-only orthogonality avoids the distance penalty.
APMs give direct control of commutativity and short cycles. We
constructed a girth-8, (3, 12)-regular code with strong BP performance.
Thank you for your attention. | would be happy to take questions.

[End.]



