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Motivation: Classical vs Quantum LDPC

Classical: sparse+random+large girth ⇒ strong BP, large distance.
Quantum: CSS constraint HXH

′
Z = 0 couples HX , HZ .

Issue: naive orthogonality ⇒ short cycles, small distance.
Goal: keep classical structure without the orthogonality distance
penalty.
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Problem:

Parent construction

ĤX =

[
HX

H̃X

]
, ĤZ =

[
HZ

H̃Z

]
, ĤX(ĤZ)

′ = 0

Full orthogonality forces HX(H̃Z)
′ = 0, HZ(H̃X)

′ = 0.
Removed rows H̃X , H̃Z become logicals.
dmin ≤ row weight.
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Design Principle

Active orthogonality only: HXH
′
Z = 0.

Latent blocks non-orthogonal: HX(H̃Z)
′ 6= 0, HZ(H̃X)

′ 6= 0.
Latent distances: d

(lat)
X , d

(lat)
Z .

Latent-based distances
d
(lat)
X := min{

(
CZ ∩ Row(H̃X)

)
\ C⊥

X},
d
(lat)
Z := min{

(
CX ∩ Row(H̃Z)

)
\ C⊥

Z }.
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Code Construction

Example J = 3, L = 12.

ĤX =


F0 F1 F2 F3 F4 F5 G0 G1 G2 G3 G4 G5

F5 F0 F1 F2 F3 F4 G5 G0 G1 G2 G3 G4

F4 F5 F0 F1 F2 F3 G4 G5 G0 G1 G2 G3

F3 F4 F5 F0 F1 F2 G3 G4 G5 G0 G1 G2

F2 F3 F4 F5 F0 F1 G2 G3 G4 G5 G0 G1

F1 F2 F3 F4 F5 F0 G1 G2 G3 G4 G5 G0

 , ĤX(ĤZ)
′ =


Ψ0Ψ1Ψ2 Ψ3Ψ4Ψ5
Ψ5Ψ0Ψ1 Ψ2Ψ3Ψ4
Ψ4Ψ5Ψ0 Ψ1Ψ2Ψ3

Ψ3Ψ4Ψ5 Ψ0Ψ1Ψ2
Ψ2Ψ3Ψ4 Ψ5Ψ0Ψ1
Ψ1Ψ2Ψ3 Ψ4Ψ5Ψ0

 ,

ĤZ =


G′

0 G
′
5 G

′
4 G

′
3 G

′
2 G

′
1 F

′
0 F

′
5 F

′
4 F

′
3 F

′
2 F

′
1

G′
1 G

′
0 G

′
5 G

′
4 G

′
3 G

′
2 F

′
1 F

′
0 F

′
5 F

′
4 F

′
3 F

′
2

G′
2 G

′
1 G

′
0 G

′
5 G

′
4 G

′
3 F

′
2 F

′
1 F

′
0 F

′
5 F

′
4 F

′
3

G′
3 G

′
2 G

′
1 G

′
0 G

′
5 G

′
4 F

′
3 F

′
2 F

′
1 F

′
0 F

′
5 F

′
4

G′
4 G

′
3 G

′
2 G

′
1 G

′
0 G

′
5 F

′
4 F

′
3 F

′
2 F

′
1 F

′
0 F

′
5

G′
5 G

′
4 G

′
3 G

′
2 G

′
1 G

′
0 F

′
5 F

′
4 F

′
3 F

′
2 F

′
1 F

′
0

 , Ψr :=

L/2−1∑
u=0

(
FuGr−u +Gr−uFu

)
, r ∈ [L/2].
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Code Construction (Cont.)

Example J = 3, L = 12.

ĤX(ĤZ)
′ =


Ψ0 Ψ1 Ψ2 Ψ3 Ψ4 Ψ5

Ψ5 Ψ0 Ψ1 Ψ2 Ψ3 Ψ4

Ψ4 Ψ5 Ψ0 Ψ1 Ψ2 Ψ3

Ψ3 Ψ4 Ψ5 Ψ0 Ψ1 Ψ2

Ψ2 Ψ3 Ψ4 Ψ5 Ψ0 Ψ1

Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ0


Γ G0 G1 G2 G3 G4 G5
F0 C C C C C
F1 C C C C C
F2 C C C C C
F3 C C C C C
F4 C C C C C
F5 C C C C C

6 / 11



Code Construction (Cont.)

Required constraints on Fi, Gj:
Commute on Γ

Avoid short cycles
Full search is combinatorial.

Search strategy:
Restrict to affine permutations on ZP .
Checks are P -independent.
Sequential construction is fast1.

1github.com/kasaikenta/construct_apm_css_code
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github.com/kasaikenta/construct_apm_css_code


Constructed Code Example

Girth-8 (3, 12)-regular [[9216, 4612,≤ 48]] with P = 768.
Explicit weight-48 logicals ⇒ dmin ≤ 48.
d
(lat)
X = d

(lat)
Z = 48 (proof omitted).

No logical failures observed ⇒ dmin likely near 48.
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Decoding Algorithm (BP + Post-Processing)

1. Joint BP: decode on HX , HZ using X/Z correlations.

2. Trigger: if unsatisfied checks are small (e.g., ≤ 10),
estimate a suspect set K (OSD + flip-history + ETS library).

3. PP: solve the restricted residual and apply only if small-weight.
sX = (HZ)K(x)K ⊕ (HZ)K(x̂)K
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Performance

Code: girth-8, (3,12)-regular
[[9216, 4612,≤ 48]].
Decoding: joint BP + PPa

reaches FER 10−8 at p = 4%.
Benchmark: BP aligns with
DE (cycle-free, random
non-orthogonal (3,12) code).

agithub.com/kasaikenta/joint_BP_
plus_PP
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github.com/kasaikenta/joint_BP_plus_PP
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Conclusion

Active-only orthogonality avoids the distance penalty.
APMs control commutativity and short cycles.
Girth-8 (3, 12)-regular [[9216, 4612,≤ 48]] with strong BP
performance.

11 / 11


