Quantum Error Correction with Girth-16 Non-Binary LDPC Codes via Affine Permutation Construction

Kenta Kasai

Institute of Science Tokyo

ISTC 2025, UCLA, August, 2025

Background (Hashing Bound Approaching Codes and Their Challenges)

- Recent studies have reported that binary CSS codes constructed from \mathbb{F}_q -valued (J=2,L)-regular LDPC codes can achieve near-hashing-bound decoding performance over the depolarizing channel using BP decoding. (q=256)
- The girth was upper-bounded by $2L^1$, and the coding rate was given by R=1-2J/L.
- For codes with a low coding rate R, increasing the block length has led to a significant error floor.
- This was caused by BP getting trapped in short cycles and by small minimum distance: $d_{\min} < 10$.

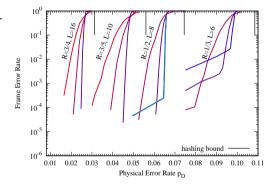


Figure: BP performance of QEC using non-binary LDPC codes over \mathbb{F}_q $(q=2^8)$.

¹Komoto and Kasai, **to appear**, *npj Quantum Information*, 2025.

²Kasai, Hagiwara, Imai, and Sakaniwa, IEEE Trans. Information Theory, 2011.

Background (Solution for rate-1/3 codes)

- For codes with R=1/3, even at large block lengths, a code modification³ that increases the minimum distance $d_{\min} \leq 14$ and $O_n(1)$ post-processing³ after BP decoding have achieved FERs as low as 10^{-5} .
- In this study, for codes with R=1/2, i.e., L=8, we aim to reduce the error floor without post-processing at large block lengths.

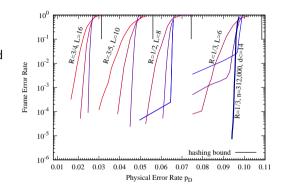


Figure: BP perormance of QEC with non-binary LDPC codes with \mathbb{F}_q $(q=2^8)$.

³K. Kasai, arXiv:2506.15636, 2025.

Method for Maximizing Girth and Distance in J=2 LDPC Codes

- In LDPC codes with a parity-check matrix of column weight J=2, rank-deficient cycles generate non-zero codewords.
- In general, all codewords in LDPC codes with J=2 consist of unions of such cycle codewords.
- Our approach is to maximize the girth up to its upper bound of 2L=16 and, moreover, to increase the minimum distance.
- In QC-LDPC-based constructions², the girth is upper-bounded by 12; hence an alternative approach is required.

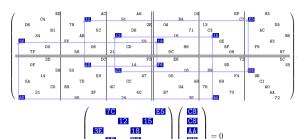


Figure: If a cycle of length 2ℓ is rank-deficient, then a cycle codeword of weight ℓ exists.

²Kasai, Hagiwara, Imai, and Sakaniwa, IEEE Trans. Information Theory, 2011.

Permutation-Matrix-Based Code Construction

We base our code design on the following procedure¹.

1. Prepare $P \times P$ binary commuting permutation matrices $\{f_i\}_{i=0}^{L/2-1}$ and $\{g_i\}_{i=0}^{L/2-1}$:

$$f_i g_j = g_j f_i$$
 for all i, j .

2. Construct binary base matrices \hat{H}_X and \hat{H}_Z by arranging f_i and g_i in a cyclic manner, as illustrated below. Example with J=2 and L=8:

$$\begin{split} \hat{H}_X &= \left(\begin{array}{cccc|c} f_0 & f_1 & f_2 & f_3 & g_0 & g_1 & g_2 & g_3 \\ f_3 & f_0 & f_1 & f_2 & g_3 & g_0 & g_1 & g_2 \\ \end{array} \right), \\ \hat{H}_Z &= \left(\begin{array}{cccc|c} f_0^{-1} & f_3^{-1} & f_2^{-1} & f_1^{-1} & g_0^{-1} & g_3^{-1} & g_2^{-1} & g_1^{-1} \\ f_1^{-1} & f_0^{-1} & f_3^{-1} & f_2^{-1} & g_1^{-1} & g_0^{-1} & g_3^{-1} & g_2^{-1} \\ \end{array} \right). \end{split}$$

With this choice, they become orthogonal: $\hat{H}_X\hat{H}_Z^\mathsf{T}=0$. The task of this study is to select $\{f_i\}$ and $\{g_i\}$ so that \hat{H}_X and \hat{H}_Z contain no cycles of length less than 16.

3. Non-binarize step: choose the \mathbb{F}_q -valued entries of H_X and H_Z so that they have the same support (positions of nonzero entries) as \hat{H}_X and \hat{H}_Z , respectively, and satisfy the orthogonality condition

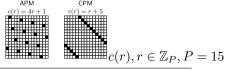
$$H_X H_Z^\mathsf{T} = 0.$$

¹Komoto and Kasai, **to appear**, *npj Quantum Information*, 2025.

Restrictions on $\{f_i\}$ and $\{g_i\}$ in Code Construction

1. Commutativity condition for orthogonality: $f_i g_i = g_i f_i$

- 2. Non-commutativity condition: Any 2×3 commuting submatrix always contains a 12-cycle. Therefore, $\{f_i\}$ and $\{g_i\}$ must be **non-commuting within each set**.
- Use affine permutation matrices (APM): CPM vaiolates non-commutativity condition. Attempt to construct codes with girth 16 with general permutation matrices failed due to huge search space and high complexity.



$$\hat{H}_X = \begin{pmatrix} f_0 & f_1 & f_2 & f_3 \\ f_3 & f_0 & f_1 & f_2 \\ \end{pmatrix} \begin{pmatrix} g_0 & g_1 & g_2 & g_3 \\ g_3 & g_0 & g_1 & g_2 \\ \end{pmatrix}$$

$$\hat{H}_Z = \begin{pmatrix} f_0^{-1} & f_3^{-1} & f_2^{-1} & f_1^{-1} \\ f_1^{-1} & f_0^{-1} & f_3^{-1} & f_2^{-1} \\ \end{pmatrix} \begin{pmatrix} g_0^{-1} & g_3^{-1} & g_2^{-1} & g_1^{-1} \\ g_1^{-1} & g_0^{-1} & g_3^{-1} & g_2^{-1} \\ \end{pmatrix}$$

		f_0	f_1	f_2	f_3	g_0	g_1	g_2	g_3
	f_0	_	0	0	0	1	1	1	1
	f_1	0	_	0	0	1	1	1	1
	f_2	0	0	_	0	1	1	1	1
	f_3	0	0	0	_	1	1	1	1
	g_0	1	1	1	1	_	0	0	0
	g_1	1	1	1	1	0	_	0	0
	g_2	1	1	1	1	0	0	_	0
	g_3	1	1	1	1	0	0	0	_

Legend: 1 commute, 0 non-commute, - diagonal.

⁴M. P. C. Fossorier, IEEE Transactions on Information Theory, 2004.

Select APMs $\{f_i\}_{i=0}^{L/2-1}, \{g_i\}_{i=0}^{L/2-1}$ one by one by generating random candidates.

For each candidate, check the following three conditions:

- Commutativity between f_i and g_j ,
- Non-commutativity within $\{f_i\}$ and within $\{g_i\}$,
- No cycles shorter than 16 in base matrices \hat{H}_X and \hat{H}_Z .

If a candidate fails any of these conditions, reject it and generate a new one.

$$\hat{H}_{X} = \begin{pmatrix} f_{0} & f_{1} & f_{2} & f_{3} \\ f_{3} & f_{0} & f_{1} & f_{2} \end{pmatrix} \begin{vmatrix} g_{0} & g_{1} & g_{2} & g_{3} \\ g_{3} & g_{0} & g_{1} & g_{2} \end{pmatrix},$$

$$\hat{H}_{Z} = \begin{pmatrix} f_{0}^{-1} & f_{3}^{-1} & f_{2}^{-1} & f_{1}^{-1} \\ f_{1}^{-1} & f_{0}^{-1} & f_{3}^{-1} & f_{2}^{-1} \end{vmatrix} \begin{vmatrix} g_{0}^{-1} & g_{3}^{-1} & g_{2}^{-1} & g_{1}^{-1} \\ g_{1}^{-1} & g_{0}^{-1} & g_{3}^{-1} & g_{2}^{-1} \end{pmatrix}.$$

$$f_0(x) = 3151X + 7075$$
, $f_1(x) = 9451X + 6495$, $f_2(x) = 7351X + 1295$, $f_3(x) = 10501X + 3540$
 $g_0(x) = 6301X + 5178$, $g_1(x) = 5041X + 9360$, $g_2(x) = X + 4584$, $g_3(x) = 7561X + 5784$

Select APMs $\{f_i\}_{i=0}^{L/2-1}, \{g_i\}_{i=0}^{L/2-1}$ one by one by generating random candidates.

For each candidate, check the following three conditions:

- Commutativity between f_i and g_j ,
- Non-commutativity within $\{f_i\}$ and within $\{g_i\}$,
- No cycles shorter than 16 in base matrices \hat{H}_X and \hat{H}_Z .

If a candidate fails any of these conditions, reject it and generate a new one.

$$\hat{H}_X = \begin{pmatrix} f_0 & f_1 & f_2 & f_3 \\ f_3 & f_0 & f_1 & f_2 \end{pmatrix} \begin{pmatrix} g_0 & g_1 & g_2 & g_3 \\ g_3 & g_0 & g_1 & g_2 \end{pmatrix},$$

$$\hat{H}_Z = \begin{pmatrix} f_0^{-1} & f_3^{-1} & f_2^{-1} & f_1^{-1} \\ f_1^{-1} & f_0^{-1} & f_3^{-1} & f_2^{-1} \end{pmatrix} \begin{pmatrix} g_0^{-1} & g_3^{-1} & g_2^{-1} & g_1^{-1} \\ g_1^{-1} & g_0^{-1} & g_3^{-1} & g_2^{-1} \end{pmatrix}.$$

$$f_0(x) = 3151X + 7075$$
, $f_1(x) = 9451X + 6495$, $f_2(x) = 7351X + 1295$, $f_3(x) = 10501X + 3540$
 $g_0(x) = 6301X + 5178$, $g_1(x) = 5041X + 9360$, $g_2(x) = X + 4584$, $g_3(x) = 7561X + 5784$

Select APMs $\{f_i\}_{i=0}^{L/2-1}, \{g_i\}_{i=0}^{L/2-1}$ one by one by generating random candidates.

For each candidate, check the following three conditions:

- Commutativity between f_i and g_j ,
- Non-commutativity within $\{f_i\}$ and within $\{g_i\}$,
- No cycles shorter than 16 in base matrices \hat{H}_X and \hat{H}_Z .

If a candidate fails any of these conditions, reject it and generate a new one.

$$\hat{H}_X = \begin{pmatrix} f_0 & f_1 & f_2 & f_3 \\ f_3 & f_0 & f_1 & f_2 \end{pmatrix} \begin{pmatrix} g_0 & g_1 & g_2 & g_3 \\ g_3 & g_0 & g_1 & g_2 \end{pmatrix},$$

$$\hat{H}_Z = \begin{pmatrix} f_0^{-1} & f_3^{-1} & f_2^{-1} & f_1^{-1} \\ f_1^{-1} & f_0^{-1} & f_3^{-1} & f_2^{-1} \end{pmatrix} \begin{pmatrix} g_0^{-1} & g_3^{-1} & g_2^{-1} & g_1^{-1} \\ g_1^{-1} & g_0^{-1} & g_3^{-1} & g_2^{-1} \end{pmatrix}.$$

$$f_0(x) = 3151X + 7075,$$
 $f_1(x) = 9451X + 6495,$ $f_2(x) = 7351X + 1295,$ $f_3(x) = 10501X + 3540$ $g_0(x) = 6301X + 5178,$ $g_1(x) = 5041X + 9360,$ $g_2(x) = X + 4584,$ $g_3(x) = 7561X + 5784$

Select APMs $\{f_i\}_{i=0}^{L/2-1}, \{g_i\}_{i=0}^{L/2-1}$ one by one by generating random candidates.

For each candidate, check the following three conditions:

- Commutativity between f_i and g_j ,
- Non-commutativity within $\{f_i\}$ and within $\{g_i\}$,
- No cycles shorter than 16 in base matrices \hat{H}_X and \hat{H}_Z .

If a candidate fails any of these conditions, reject it and generate a new one.

$$\hat{H}_X = \begin{pmatrix} f_0 & f_1 & f_2 & f_3 \\ f_3 & f_0 & f_1 & f_2 \end{pmatrix} \begin{pmatrix} g_0 & g_1 & g_2 & g_3 \\ g_3 & g_0 & g_1 & g_2 \end{pmatrix},$$

$$\hat{H}_Z = \begin{pmatrix} f_0^{-1} & f_3^{-1} & f_2^{-1} & f_1^{-1} \\ f_1^{-1} & f_0^{-1} & f_3^{-1} & f_2^{-1} \end{pmatrix} \begin{pmatrix} g_0^{-1} & g_3^{-1} & g_2^{-1} & g_1^{-1} \\ g_1^{-1} & g_0^{-1} & g_3^{-1} & g_2^{-1} \end{pmatrix}.$$

$$f_0(x) = 3151X + 7075,$$
 $f_1(x) = 9451X + 6495,$ $f_2(x) = 7351X + 1295,$ $f_3(x) = 10501X + 3540$ $g_0(x) = 6301X + 5178,$ $g_1(x) = 5041X + 9360,$ $g_2(x) = X + 4584,$ $g_3(x) = 7561X + 5784$

Select APMs $\{f_i\}_{i=0}^{L/2-1}, \{g_i\}_{i=0}^{L/2-1}$ one by one by generating random candidates.

For each candidate, check the following three conditions:

- Commutativity between f_i and g_j ,
- Non-commutativity within $\{f_i\}$ and within $\{g_i\}$,
- No cycles shorter than 16 in base matrices \hat{H}_X and \hat{H}_Z .

If a candidate fails any of these conditions, reject it and generate a new one.

$$\hat{H}_X = \begin{pmatrix} f_0 & f_1 & f_2 & f_3 \\ f_3 & f_0 & f_1 & f_2 \end{pmatrix} \begin{pmatrix} g_0 & g_1 & g_2 & g_3 \\ g_3 & g_0 & g_1 & g_2 \end{pmatrix},$$

$$\hat{H}_Z = \begin{pmatrix} f_0^{-1} & f_3^{-1} & f_2^{-1} & f_1^{-1} \\ f_1^{-1} & f_0^{-1} & f_3^{-1} & f_2^{-1} \end{pmatrix} \begin{pmatrix} g_0^{-1} & g_3^{-1} & g_2^{-1} & g_1^{-1} \\ g_1^{-1} & g_0^{-1} & g_3^{-1} & g_2^{-1} \end{pmatrix}.$$

$$f_0(x) = 3151X + 7075,$$
 $f_1(x) = 9451X + 6495,$ $f_2(x) = 7351X + 1295,$ $f_3(x) = 10501X + 3540$ $g_0(x) = 6301X + 5178,$ $g_1(x) = 5041X + 9360,$ $g_2(x) = X + 4584,$ $g_3(x) = 7561X + 5784$

Select APMs $\{f_i\}_{i=0}^{L/2-1}, \{g_i\}_{i=0}^{L/2-1}$ one by one by generating random candidates.

For each candidate, check the following three conditions:

- Commutativity between f_i and g_j ,
- Non-commutativity within $\{f_i\}$ and within $\{g_i\}$,
- No cycles shorter than 16 in base matrices \hat{H}_X and \hat{H}_Z .

If a candidate fails any of these conditions, reject it and generate a new one.

$$\hat{H}_X = \begin{pmatrix} f_0 & f_1 & f_2 & f_3 \\ f_3 & f_0 & f_1 & f_2 \end{pmatrix} \begin{pmatrix} g_0 & g_1 & g_2 & g_3 \\ g_3 & g_0 & g_1 & g_2 \end{pmatrix},$$

$$\hat{H}_Z = \begin{pmatrix} f_0^{-1} & f_3^{-1} & f_2^{-1} & f_1^{-1} \\ f_1^{-1} & f_0^{-1} & f_3^{-1} & f_2^{-1} \end{pmatrix} \begin{pmatrix} g_0^{-1} & g_3^{-1} & g_2^{-1} & g_1^{-1} \\ g_1^{-1} & g_0^{-1} & g_3^{-1} & g_2^{-1} \end{pmatrix}.$$

$$f_0(x) = 3151X + 7075,$$
 $f_1(x) = 9451X + 6495,$ $f_2(x) = 7351X + 1295,$ $f_3(x) = 10501X + 3540$
 $g_0(x) = 6301X + 5178,$ $g_1(x) = 5041X + 9360,$ $g_2(x) = X + 4584,$ $g_3(x) = 7561X + 5784$

Select APMs $\{f_i\}_{i=0}^{L/2-1}, \{g_i\}_{i=0}^{L/2-1}$ one by one by generating random candidates.

For each candidate, check the following three conditions:

- Commutativity between f_i and g_j ,
- Non-commutativity within $\{f_i\}$ and within $\{g_i\}$,
- No cycles shorter than 16 in base matrices \hat{H}_X and \hat{H}_Z .

If a candidate fails any of these conditions, reject it and generate a new one.

$$\hat{H}_X = \begin{pmatrix} f_0 & f_1 & f_2 & f_3 \\ f_3 & f_0 & f_1 & f_2 \end{pmatrix} \begin{pmatrix} g_0 & g_1 & g_2 & g_3 \\ g_3 & g_0 & g_1 & g_2 \end{pmatrix},$$

$$\hat{H}_Z = \begin{pmatrix} f_0^{-1} & f_3^{-1} & f_2^{-1} & f_1^{-1} \\ f_1^{-1} & f_0^{-1} & f_3^{-1} & f_2^{-1} \end{pmatrix} \begin{pmatrix} g_0^{-1} & g_3^{-1} & g_2^{-1} & g_1^{-1} \\ g_1^{-1} & g_0^{-1} & g_3^{-1} & g_2^{-1} \end{pmatrix}.$$

$$f_0(x) = 3151X + 7075,$$
 $f_1(x) = 9451X + 6495,$ $f_2(x) = 7351X + 1295,$ $f_3(x) = 10501X + 3540$
 $g_0(x) = 6301X + 5178,$ $g_1(x) = 5041X + 9360,$ $g_2(x) = X + 4584,$ $g_3(x) = 7561X + 5784$

Select APMs $\{f_i\}_{i=0}^{L/2-1}, \{g_i\}_{i=0}^{L/2-1}$ one by one by generating random candidates.

For each candidate, check the following three conditions:

- Commutativity between f_i and g_j ,
- Non-commutativity within $\{f_i\}$ and within $\{g_i\}$,
- No cycles shorter than 16 in base matrices \hat{H}_X and \hat{H}_Z .

If a candidate fails any of these conditions, reject it and generate a new one.

$$\hat{H}_X = \begin{pmatrix} f_0 & f_1 & f_2 & f_3 \\ f_3 & f_0 & f_1 & f_2 \end{pmatrix} \begin{pmatrix} g_0 & g_1 & g_2 & g_3 \\ g_3 & g_0 & g_1 & g_2 \end{pmatrix},$$

$$\hat{H}_Z = \begin{pmatrix} f_0^{-1} & f_3^{-1} & f_2^{-1} & f_1^{-1} \\ f_1^{-1} & f_0^{-1} & f_3^{-1} & f_2^{-1} \end{pmatrix} \begin{pmatrix} g_0^{-1} & g_3^{-1} & g_2^{-1} & g_1^{-1} \\ g_1^{-1} & g_0^{-1} & g_3^{-1} & g_2^{-1} \end{pmatrix}.$$

$$f_0(x) = 3151X + 7075,$$
 $f_1(x) = 9451X + 6495,$ $f_2(x) = 7351X + 1295,$ $f_3(x) = 10501X + 3540$
 $g_0(x) = 6301X + 5178,$ $g_1(x) = 5041X + 9360,$ $g_2(x) = X + 4584,$ $g_3(x) = 7561X + 5784$

BP decoding

- ullet Non-binarized matrices: H_X and H_Z
- Measure syndromes:

$$s = H_Z x$$
, $t = H_X z$

- BP iteratively and simultaneously estimates \hat{x} and \hat{z} at each iteration.
- Error correction is regarded as successful if and only if

$$oldsymbol{x} + \hat{oldsymbol{x}} \in C_X^\perp \ ext{and} \ oldsymbol{z} + \hat{oldsymbol{z}} \in C_Z^\perp.$$

• In our experiments, whenever decoding was successful, we always observed $x + \hat{x} = 0$ and $z + \hat{z} = 0$. On the other hand, when decoding failed, $w_H(x + \hat{x})$ and $w_H(z + \hat{z})$ are proportional to n. This indicates that the observed errors are not due to the error floor, and therefore no additional post-processing after BP is required.

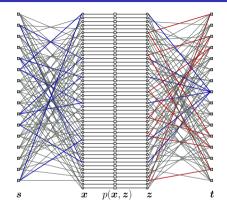


Figure: Factor graph of BP.

Minimum Distance Estimation: Upper Bound

• Minimum distance d_{\min}

$$d_X = \min \left\{ w_H(\mathbf{c}) \mid \mathbf{c} \in C_X \backslash C_Z^{\perp} \right\}$$
$$d_Z = \min \left\{ w_H(\mathbf{c}) \mid \mathbf{c} \in C_Z \backslash C_X^{\perp} \right\}$$
$$d_{\min} = \min \left\{ d_X, d_Z \right\},$$

- We calculate the bit-level weight distribution of codewords formed from the shortest cycles.
- 1. Enumerate all shortest cycle codewords in $C_X \setminus C_Z^{\perp}$ and $C_Z \setminus C_X^{\perp}$.
- 2. $A_X(w)$ and $A_Z(w)$: Count the number of such codewords of weight w, respectively.
- 3. From the table, we observe that the minimum bitwise weight among these codewords is 14.

	Prop.		Conv.				
w	$A_X(w)$	$A_Z(w)$	W	$A_X(w)$	$A_Z(w)$		
14	0	2	9	0	7		
15	7	4	10	3	10		
16	19	16	11	23	36		
17	64	74	12	115	117		
18	180	243	13	326	393		
19	517	545	14	1012	976		
20	1395	1394	15	2512	2413		
21	3198	3361	16	5570	5426		
22	6557	6580	17	10975	10905		
23	12432	12604	18	19321	18577		
24	22065	22441	19	31644	30583		
25	36562	37114	20	46466	44906		
26	56105	57037	21	62938	60967		
27	80796	81754	22	78365	75967		
28	108252	109732	23	89540	86380		
29	136363	137293	24	92775	90397		
30	161125	162252	25	89613	87421		
31	177894	179259	26	79558	77923		
32	184555	185588	27	65163	63004		
33	179963	180763	28	48834	47345		
34	164748	166054	29	33761	33019		
35	141673	142321	30	21240	20708		
36	113975	115282	31	12677	11926		
37	86629	87555	32	6664	6374		
38	61398	62078	33	3160	3139		
39	41178	41603	34	1436	1340		
40	25493	25983	35	540	527		
41	14795	15334	36	205	194		
42	8001	8279	37	67 17	61		
43	4183	4287	38		19		
44	1946	1997	39	5	3		
45	858	887	40	0	2		
46	338 127	340 150	41	0	0		
47	46	150 46	42	l ö	0		
49	8	19	44	0	0		
50	4	7	45	0			
51 52	1 0	1	46 47	0	0		
50	4	7	38	17	19		
51 52	1 0	1	39 40	5	3 2		
total	255× 7192	255× 7256	total	255× 3155	255×3063		

Numerical Result:

- For the code with R=1/2 and L=8, we reduced the error floor using only BP decoding without any post-processing.
- No error floor has been observed down to a frame error rate of at least 10^{-6} .
- The block length is close to one million, which is extremely large.

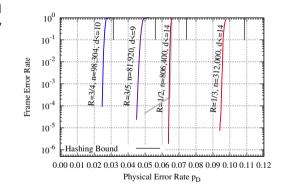


Figure: Comparison: Conventional method (grey) with proposed method (red) for R=1/2.

Conclusions and Future work

- We successfully constructed long quantum LDPC codes with girth 16 and rate 1/2, whose minimum distance does not exceed 14, achieving a deep error floor without post-processing.
- We plan to further increase the minimum distance by modifying the non-binary entries of cycle codewords associated with 16-cycles.
- We plan to analyze the error floor using weight distribution.
- We also aim to further lower the error floor by applying post-processing, although observing the error floor remains challenging.

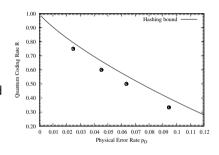


Figure: Physical Error Rate required for $FER=10^{-4}$ vs. Coding Rate