Quantum Error Correction with Girth-16 Non-Binary LDPC Codes via

Affine Permutation Construction

Kenta Kasai

Institute of Science Tokyo

ISTC 2025, UCLA, August, 2025

1/11

Background (Hashing Bound Approaching Codes and Their Challenges)

@ Recent studies® have reported that binary CSS s
codes constructed from F-valued (J = 2, L)-regular e o [
LDPC codes? can achieve near-hashing-bound w0t ;’5 S
decoding performance over the depolarizing channel w2l big g 1
using BP decoding. (¢ = 256) :
u% 10° b E
@ The girth was upper-bounded by 2L*, and the g
. . i 4L i
coding rate was given by R=1—2J/L. 10
5 L .
@ For codes with a low coding rate R, increasing the 0
. ags y hashing bound
block length has led to a significant error floor. 10 Wbttt
001 002 003 004 005 006 007 008 009 010 0.11
Physical Error Rate pp
@ This was caused by BP getting trapped in short
Zy(.:les alnod by small minimum distance: Figure: BP performance of QEC using non-binary
min < 10- LDPC codes over F, (¢ = 2°).

IKomoto and Kasai, to appear, npj Quantum Information, 2025.

2Kasai, Hagiwara, Imai, and Sakaniwa, IEEE Trans. Information Theory, 2011.
2/11

Background (Solution for rate-1/3 codes)

@ For codes with R = 1/3, even at large block
lengths, a code modification® that increases the
minimum distance d,,;, < 14 and O, (1)
post-processing? after BP decoding have achieved
FERs as low as 107°.

@ In this study, for codes with R =1/2, i.e., L =38,
we aim to reduce the error floor without
post-processing at large block lengths.

3K. Kasai, arXiv:2506.15636, 2025.

Frame Error Rate
=
(=}
Py
1/3, n=312,000, d<:

10-4 L

R:

107 ¢

ha§1i‘ng bou‘nd ;

0
0.01 0.02 003 004 005 006 007 008 009 010 011
Physical Error Rate pp

Figure: BP peformance of QEC with non-binary
LDPC codes with F, (¢ = 2%).

3/11

In LDPC codes with a parity-check matrix of w U T e e L
column weight J = 2, rank-deficient cycles S — - O |
generate non-zero codewords. = = S = 7 w
. . 58| 50 16
In general, all codewords in LDPC codes with w w ® I
. . co 88 4c oA 76 A0
J = 2 consist of unions of such cycle a 5 L0 . g "
codewords.
Our approach is to maximize the girth up to its o
upper bound of 2L = 16 and, moreover, to o
. . . . ' '
increase the minimum distance. e

In QC-LDPC—based constructions?, the girth is
upper-bounded by 12; hence an alternative
approach is required.

Figure: If a cycle of length 2¢ is rank-deficient, then a
cycle codeword of weight £ exists.

2Kasai, Hagiwara, Imai, and Sakaniwa, IEEE Trans. Information Theory, 2011.
4/11

Permutation-Matrix-Based Code Construction

We base our code design on the following procedure?.
1. Prepare P x P binary commuting permutation matrices {fi}fz/g_l and {gi}fz/g_l:

fzg] = g]fl fOI’ aII 7,,]

2. Construct binary base matrices Hy and Hy by arranging f; and g; in a cyclic manner, as
illustrated below. Example with J =2 and L = 8:

fy = fo h fo fsllgo @ 92 g3
fs fo f folles 90 9 92)
i, — < Joo i B S s 9 e) _
o o s ol 900 95 9
With this choice, they become orthogonal: I:IXH} = 0. The task of this study is to select {f;}

and {g;} so that Hy and H contain no cycles of length less than 16.
3. Non-binarize step: choose the F,-valued entries of Hx and Hz so that they have the same support

(positions of nonzero entries) as Hy and Hy, respectively, and satisfy the orthogonality condition

HxH} = 0.

1Komoto and Kasai, to appear, npj Quantum Information, 2025. 5/11

Restrictions on {f;} and {g;} in Code Construction

1. Commutativity condition for orthogonality: fy = (fo fi fo fs H dgo 9 92 g3)
figj = g fi fs fo i folles 9 g1 g
2. Non-commutativity condition: Hy (f(i f3j fa flj H g(i gf; 92:1 g1)
Any 2 x 3 commuting submatrix always oo ho B e % 9
contains a 12-cycle. Therefore, {f;} and {g;}

must be non-commuting within each set. fo J;l J;Q J;3 910 911 912 913

3. Use affine permutation matrices (APM): CPM ?1) o - o0 ol1 1 1 1
vaiolates non-commutativity condition. 210 0 - o0o]1 1 1 1
Attempt to construct codes with girth 16 with fs/o o o -]1 1 1 1
general permutation matrices failed due to |1 1 1 1|- 0 0 O
huge search space and high complexity. a1l 1 1 1|0 - 0 O
APM cPM g1 1 1 10 0 - 0

o(r) =4r+1 c(r)=r+5 g3 1 1 1 1 0 0 0 _

Legend: 1 commute, 0 non-commute, — diagonal.

c(r),r € Zp,P =15

4M. P. C. Fossorier, IEEE Transactions on Information Theory, 2004.

6/11

Progressive Random Code Construction Algorithm (target girth 16)

Select APMs {fz}L/2 ! {9 z}L/2 one by one by generating random candidates.
For each candidate, check the following three conditions:

o Commutativity between f; and g;,
o Non-commutativity within {f;} and within {gz}
@ No cycles shorter than 16 in base matrices Hx and H.
If a candidate fails any of these conditions, reject it and generate a new one.

Example: APMs for P = 12,600, J =2, L =8, R =1/2, n = 806,400, girth= 16

fo(z) = 3151X + 7075, fi(x) = , fax) = » fa(@) =
go(x) = , gqi(x) = » ga(z) =) g93(x) =

7/11

Progressive Random Code Construction Algorithm (target girth 16)

Select APMs {fz}L/2 ! {9 z}L/2 one by one by generating random candidates.
For each candidate, check the following three conditions:

o Commutativity between f; and g;,
o Non-commutativity within {f;} and within {gz}
@ No cycles shorter than 16 in base matrices Hx and H.
If a candidate fails any of these conditions, reject it and generate a new one.

Example: APMs for P = 12,600, J =2, L =8, R =1/2, n = 806,400, girth= 16

fo(x) = 3151X 47075, fi(z) = , fa(z) = , fa(z)=
go(z) = 6301X + 5178, ¢1(x) = . ga(z) =

7/11

Progressive Random Code Construction Algorithm (target girth 16)

Select APMs {fz}L/2 ! {9 z}L/2 one by one by generating random candidates.
For each candidate, check the following three conditions:

o Commutativity between f; and g;,
o Non-commutativity within {f;} and within {gz}
@ No cycles shorter than 16 in base matrices Hx and H.
If a candidate fails any of these conditions, reject it and generate a new one.

Example: APMs for P = 12,600, J =2, L =8, R =1/2, n = 806,400, girth= 16

fo(x) = 3151X + 7075, fi(z) = 9451X + 6495, folz) = . falz) =
go(x) = 6301X + 5178, gi(x) = , ga(x) =

7/11

Progressive Random Code Construction Algorithm (target girth 16)

Select APMs {fz}L/2 ! {9 z}L/2 one by one by generating random candidates.
For each candidate, check the following three conditions:

o Commutativity between f; and g;,
o Non-commutativity within {f;} and within {gz}
@ No cycles shorter than 16 in base matrices Hx and H.
If a candidate fails any of these conditions, reject it and generate a new one.

Example: APMs for P = 12,600, J =2, L =8, R =1/2, n = 806,400, girth= 16

Hy = (fo h g 9)
fo h g G0 ’
; 5t il g1)
Hy; = - l _
7 < f1 ! fo 91 ! 9o !
fo(z) = 151X + 7075, fi(x) = 9451X + 6495, fo(z) = . fa(@) =
go(z) = 6301X + 5178, g1(z) = 5041X + 9360, go(z) = , g3(2) =

7/11

Progressive Random Code Construction Algorithm (target girth 16)

Select APMs {fz}L/2 ! {9 z}L/2 one by one by generating random candidates.
For each candidate, check the following three conditions:

o Commutativity between f; and g;,
o Non-commutativity within {f;} and within {gz}
@ No cycles shorter than 16 in base matrices Hx and H.
If a candidate fails any of these conditions, reject it and generate a new one.

Example: APMs for P = 12,600, J =2, L =8, R =1/2, n = 806,400, girth= 16

Hy = (fo i)2 g 9)
fo fi fo 9o g1 ’

y _(f ot et g1)

HZ - < fl_l fo—l f2—1 91_1 go—l °

fo(z) = 151X + 7075, fi(zx) = 9451X + 6495, fo(x) = 7351X + 1295, f3(z) =
go(x) = 6301X + 5178, g1(x) = 5041X + 9360, go(x) = : g3(2) =

7/11

Progressive Random Code Construction Algorithm (target girth 16)

Select APMs {fz}L/2 ! {9 z}L/2 one by one by generating random candidates.
For each candidate, check the following three conditions:

o Commutativity between f; and g;,
o Non-commutativity within {f;} and within {gz}
@ No cycles shorter than 16 in base matrices Hx and H.
If a candidate fails any of these conditions, reject it and generate a new one.

Example: APMs for P = 12,600, J =2, L =8, R =1/2, n = 806,400, girth= 16

Hy = (fo i)2

90 g1 92
90 91 g2)’

fo ho
gZ:<fo_i B PR i I R Y)
it fo i llor 90 9"

fo(x) = 3151X + 7075, fi(x) = 9451X + 6495, fo(x) = 7351X + 1295, fa(z) =
go(x) = 6301X + 5178, gi(x) =5041X + 9360, go(z) = X + 4584, g3(x) =

7/11

Progressive Random Code Construction Algorithm (target girth 16)

Select APMs {fz}L/2 ! {9 z}L/2 one by one by generating random candidates.
For each candidate, check the following three conditions:

o Commutativity between f; and g;,
o Non-commutativity within {f;} and within {gz}
@ No cycles shorter than 16 in base matrices Hx and H.
If a candidate fails any of these conditions, reject it and generate a new one.

Example: APMs for P = 12,600, J =2, L =8, R =1/2, n = 806,400, girth= 16

5 fo fi f2 f3
Hx (fs [

; R R R e

Hy; =) > - =

Z < f1 1 fO 1 f3 1 f2 1

fo(z) =3151X + 7075, fi(z) =9451X + 6495, fo(x)=T7351X + 1295, f5(x) = 10501X + 3540
go(x) = 6301X + 5178, gi(x) =5041X + 9360, go(z) = X + 4584, g3(x) =

9o g1 92

90 91 g2)’
9. 4 % 9)
91 Y0 95"

7/11

Progressive Random Code Construction Algorithm (target girth 16)

Select APMs {fz}L/2 ! {9 z}L/2 one by one by generating random candidates.
For each candidate, check the following three conditions:

o Commutativity between f; and g;,
o Non-commutativity within {f;} and within {gz}
@ No cycles shorter than 16 in base matrices Hx and H.
If a candidate fails any of these conditions, reject it and generate a new one.

Example: APMs for P = 12,600, J =2, L =8, R =1/2, n = 806,400, girth= 16

5 fo fi f2 f3
Hx (fs [

: O R
Hy; = L > ‘. l

Z < f1 1 fO 1 f3 1 f2 1

fo(x) = 3151X + 7075, fi(z) = 9451X + 6495, fo(z) = T351X + 1295, fa(x) = 10501X + 3540
go(z) = 6301X + 5178, g1(z) = 5041X + 9360, go(z) = X + 4584, g3(z) = T561X + 5784

90 g1 g2 gs
g3 9o g1 g2)’

90_1 93_1 92_1 gfi).
91 90 Y93 92

v

7/11

BP decoding

Non-binarized matrices: Hx and Hy

Measure syndromes: 7O

s=Hzx, t=Hxz D 5

o BP iteratively and simultaneously estimates estimates
 and 2 at each iteration.

Error correction is regarded as successful if and only if

z+2eCxandz+2€Cy. ZN\

In our experiments, whenever decoding was successful, we
always observed + & = 0 and z 4+ 2 = 0. On the other
hand, when decoding failed, wy (x + &) and wy (z + 2)
are propotional to n. This indicates that the observed
errors are not due to the error floor, and therefore no
additional post-processing after BP is required.

Figure: Factor graph of BP.

8/11

Minimum Distance Estimation: Upper Bound

@ Minimum distance dpin — s
i el] oo
— L 18 | 355
. 1 22 17 1)6)9"75 m;o:
dz = min {wy(c) | e € Cz\Cx} PR
. 26 21 020323 L»U?bz
dmin = min {dx, dz}, : BBk | D
: (28
@ We calculate the bit-level weight distribution of codewords formed # NI
35 30 21240 20708
from the shortest cycles. » B |
3 Sl oTee | b
Enumerate all shortest cycle codewords in Cx \ C% and Cz \ Cx. i x| @ |
43 38 17 19
B0 ;
2. Ax(w) and Az(w): Count the number of such codewords of] o ;
47 42 o 0
. . 48 43 o 0
weight w, respectively. ; . §
3. From the table, we observe that the minimum bitwise weight among i S b
. ;2 40 ; 2
these codewords is 14. TowaT | 255% 7193 [255% 7256 || total [255% 3155 | Z50% 3063

9/11

Numerical Result:

o For the code with R =1/2 and L = 8, we reduced
the error floor using only BP decoding without any

post-processing.

@ No error floor has been observed down to a frame
error rate of at least 1076.

@ The block length is close to one million, which is

extremely large.

10°
= [2 k) I ks
. if il
10" < 5 4 ¥
o =3 = S
o 102 & 5 I S g
5 10 E = = 3
“ b v = -~
= ¢ = o o
S 3 i 1
2 10 3 > i
A 3 5 ’ & 5
o f | 3 S
E 104 == I
= , o &
=
107 I
10° -Hashing Bound E—

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12
Physical Error Rate pp

Figure: Comparison: Conventional method (grey)
with proposed method (red) for R = 1/2.

10/11

Conclusions and Future work

@ We successfully constructed long quantum LDPC codes with
girth 16 and rate 1/2, whose minimum distance does not 050
exceed 14, achieving a deep error floor without
post-processing.

Hashing bound

@ We plan to further increase the minimum distance by
modifying the non-binary entries of cycle codewords associated
with 16-cycles. 030 °

Quantum Coding Rate R
=
2
2
o

@ We plan to analyze the error floor using weight distribution. 020 bbbl b bssdssssdssdsssdssid
Physical Error Rate py,

@ We also aim to further lower the error floor by applying

- in Ith h ing the error fl remain . . .
post-processing, although observing the error floor remains Figure: Physical Error Rate required for

challenging. FER=10"* vs. Coding Rate

11/11

