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Background (Hashing Bound Approaching Codes and Their Challenges)

Recent studies1 have reported that binary CSS
codes constructed from Fq-valued (J = 2, L)-regular
LDPC codes2 can achieve near-hashing-bound
decoding performance over the depolarizing channel
using BP decoding. (q = 256)

The girth was upper-bounded by 2L1, and the
coding rate was given by R = 1− 2J/L.

For codes with a low coding rate R, increasing the
block length has led to a significant error floor.

This was caused by BP getting trapped in short
cycles and by small minimum distance:
dmin < 10.
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Figure: BP performance of QEC using non-binary
LDPC codes over Fq (q = 28).

1Komoto and Kasai, to appear, npj Quantum Information, 2025.
2Kasai, Hagiwara, Imai, and Sakaniwa, IEEE Trans. Information Theory, 2011.
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Background (Solution for rate-1/3 codes)

For codes with R = 1/3, even at large block
lengths, a code modification3 that increases the
minimum distance dmin ≤ 14 and On(1)
post-processing3 after BP decoding have achieved
FERs as low as 10−5.

In this study, for codes with R = 1/2, i.e., L = 8,
we aim to reduce the error floor without
post-processing at large block lengths.

10-6

10-5

10-4

10-3

10-2

10-1

100

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11

R
=3

/4
, L

=1
6

R
=3

/5
, L

=1
0

R
=1

/2
, L

=8

R
=1

/3
, L

=6

R
=

1/
3,

 n
=

31
2,

00
0,

 d
<

=
14

hashing bound

Fr
am

e 
E

rr
or

 R
at

e

Physical Error Rate pD

Figure: BP peformance of QEC with non-binary
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3K. Kasai, arXiv:2506.15636, 2025.
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Method for Maximizing Girth and Distance in J = 2 LDPC Codes

In LDPC codes with a parity-check matrix of
column weight J = 2, rank-deficient cycles
generate non-zero codewords.

In general, all codewords in LDPC codes with
J = 2 consist of unions of such cycle
codewords.

Our approach is to maximize the girth up to its
upper bound of 2L = 16 and, moreover, to
increase the minimum distance.

In QC-LDPC–based constructions2, the girth is
upper-bounded by 12; hence an alternative
approach is required.

Follow-Up Study on “Efficient Mitigation
of Error Floors in Quantum Error

Correction using Non-Binary LDPC Codes”
Kenta Kasai
Science Tokyo

Background
Previous studies [1, 2] have shown that quantum
error-correcting codes based on Fq-valued LDPC
codes exhibit near-hashing-bound decoding
performance over the depolarizing channel using joint
belief propagation (BP) decoding (see Fig. 1).
However, for codes with low coding rate R and large
blocklength n, a significant error floor was observed
(see Fig. 1).
In the error floor regime, the joint BP algorithm was
trapped in a small set of short cycles on the Tanner
graph, resulting in decoding failures on a small number
of noise components (see Fig. 4).

1. A previous study [3] addressed this issue for R = 1/2
by designing codes that avoid such short cycle
structures.

2. This work aims to resolve the error floor problem even
for codes with R = 1/3!

entries represent zero):

HΓ =

)



3F 4F 40 89 0A F1
D9 68 0D BC 4B 18

A9 4C 63 81 78 5C
79 0B E1 89 98 77

B9 FE 5F 86 AA 0B
01 F6 30 41 4B C7

A9 D1 3F C7 5A EA
C8 C8 AA EE A7 5F

BD 68 3B E7 37 B1
61 88 02 44 80 D7

CA 5D 6F F3 C7 43
8C 4E D3 16 CD 6D

97 BE A4 2D 85 B7
0E A7 AC 92 0C 58

D7 F3 7C 89 08 D4
C3 75 30 4D 87 5C





,

H∆ =

)



ED AC A6 16 EF 93
C4 7C 91 B4 C7 E5

D6 78 2E 0A 13 D5
B1 5C D8 71 C3 AC

34 AB 12 16 15 9B
3E EF 59 18 0E 83

D0 06 CD 86 8F F9
7F 58 21 9C 06 87

3D DC F3 E6 72 5C
0F 1D 14 F6 9D 1B

58 50 C2 16 89 0E
14 59 47 05 F4 9B

5A 7D CC 48 69 C1
C0 88 4C 0A 76 A0

21 3F 40 B7 70 AA
6F 88 24 3E 90 72





.

Each nonzero entry such as 0F represents the field element α15, where α is a fixed primitive element of Fq, and the
exponent is the decimal equivalent of the hexadecimal value. The nonzero support (positions) of HΓ and H∆ matches
those of the corresponding binary matrices ĤX and ĤZ . The matrices HΓ and H∆ are constructed to be orthogonal.
For example, let us examine the orthogonality between the 7th row of HΓ and the 5th row of H∆. These rows contain
the following intersecting non-zero entries:

HΓ[7, ·] = (α200,α238), H∆[5, ·] = (α62,α24).
Then, their inner product is given by:

α200 · α62 + α238 · α24 = α(200+62) mod 255 + α(238+24) mod 255 = α7 + α7 = 0.

This confirms that the two rows are orthogonal over F256. !

III-C Construction of HX and HZ

In this section, we construct orthogonal F2-valued matrices HX and HZ of size m→n from the orthogonal Fq-valued
matrices HΓ and H∆ of size M →N obtained in the previous section, where n = eN and m = eM . This construction
follows the method used in [30] and [31]. The matrices HX and HZ are constructed from HΓ and H∆ as follows. The
theoretical justification and proofs, which were omitted in [30] and [31], are provided in the appendices.

The companion matrix A(γ) ∈ Fe→e
2 for γ ∈ Fq are defined in Appendices A. Using the mapping A, we construct

the binary parity-check matrices (HX , HZ) as follows:
HX =

(
A(γi,j)

{
, HZ =

(
A(δi,j)"{.

From the properties of the companion matrix, it can be verified that (HX , HZ) are orthogonal:
HXH"

Z = O. (11)
A proof of (11) is provided in Appendix C.

We denote by CΓ and C∆ the Fq-linear spaces defined as the null spaces of the matrices HΓ and H∆, respectively:
CΓ = {ξ ∈ FN

q | HΓξ = 0}, C∆ = {ξ ∈ FN
q | H∆ξ = 0}.

Likewise, we denote by CX and CZ the F2-linear spaces defined as the null spaces of the binary matrices HX and HZ ,
respectively:

CX = {x ∈ Fn
2 | HXx = 0}, CZ = {x ∈ Fn

2 | HZx = 0}.

Results

Figure 1. Quantum error correction performance of the conventional
method [2] over the depolarizing channel (pD using Fq-valued LDPC codes
(e = 8, q = 2e). The code parameters are [[n = 2ePL, k = nR, d  10]]. A
clear error floor appears at coding rate R = 1/3.

Figure 2. Performance comparison between the proposed method and the
conventional method [2] (both code construction and decoding). Proposed
code + proposed decoder (red), conventional code + conventional decoder
(blue). Conventional code: [[312000, 104000, 10]]; Proposed code:
[[312000, 104000, 14]], with P = 6500.

Figure 3. Physical error rate pD for achieving FER = 10�4 as a function of
coding rate R. The proposed method achieves performance close to the
hashing bound across a wide range of coding rates.

Conventional Method: Joint BP Decoding
1. Joint BP decoding iteratively
estimates the X/Z noise vectors
(x, z) from the syndromes (s, t).

2. Degeneracy of quantum errors is
not considered; decoding is
declared successful if the
estimated noise matches the true
noise.

3. Even at low noise levels, decoding
occasionally fails—this is the error
floor phenomenon:
(a) In the error floor regime, decoding

failures involved noise affecting no
more than 12 qubits.

(b) These failures were always associated
with being trapped in a set of
length-12 cycles.

4. Goal: Eliminate the error floor!

Figure 4. Factor graph for joint BP decoding: an example of a
length-12 cycle.

Classification of the Three Cycle Types
Let P (C) be the proposition:

P (C) =

Here, (HZ)C denotes the submatrix ofHZ obtained by zeroing out all entries not involved in the
cycle C. We classify the cycle C by examining whether the associated subspace

NC := null((HZ)C) ⇢ CZ

is contained in C?
X
⇢ CZ.

1. If P (C) = true: Then NC = span(H (i)
X
) ⇢ C

?
X
⇢ CZ. This is classified as Type 1: correctable

degenerate errors.
2. If P (C) = false and (HZ)C is rank-deficient: Then NC \ {0} ⇢ CZ \ C?

X
. This is Type 2:

contains uncorrectable errors.
These cycles are problematic; our code construction aims to eliminate them.

3. If P (C) = false and (HZ)C has full rank: Then NC = {0}. This is Type 3: non-degenerate,
identifiable errors.

Proposed Decoding Algorithm
1. Run joint BP decoding. If the estimated noise x̂(`) at iteration ` satisfies the measured
syndrome, i.e.,

ŝ
(`) = HZx̂

(`) = s,

then decoding is successful and the process terminates.
2. From the history of x̂(`) and ŝ(`), estimate the set of cycles {C} in which the decoder is
trapped due to error-floor noise.
(We limit the number of detected cycles to u = 2.)

3. If the cycle set {C} is correctly identified, then the noise outside the cycles should have
been correctly estimated:

x̂{C} = x{C}.

4. Solve the following linear system over the finite field Fq for the unknown noise variables
x{C}:

(HZ){C}x{C} + (HZ){C}x̂{C} = s.

This is a low-dimensional system (number of variables  6u and rank  6u).
If a solution exists, assign any such solution to x̂{C}, and output the total estimated noise:

x̂ := x̂{C} + x̂{C}.

5. If no solution exists, return to step 1 and continue decoding.

Conclusion and Outlook
1. Achieved quantum error correction performance near the hashing bound even at low
coding rates.

2. Next goal: extend to lower rates (i.e., higher noise levels pD).
3. Aim to realize similar performance using binary codes.
4. Explore applications to memory channels and multiple-access quantum communication.
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用語

LDPC: Low-Density Parity-Check
BP:Sum-Product
APM:Affine Permutation Matrix

ISIT2025 Recent Posters Session

We extract only the nonzero components involved in the equation H∆h→
kr = 0. The relevant portion can be represented

as the following matrix-vector product:
)



7C E5
12 15

3E 18
1D F6

C2 0E
6F 90





)



C8
C8
AA
EE
A7
5F




= 0

!
Discussion 1. In contrast to the cases k = 0, 1, the UTCBCs u(k) for k = 2 can negatively affect the minimum
distance dZ . As an example, consider the cycle C in HΓ highlighted in red in Example 4. The cycle C corresponds to a
square matrix of size L:

)



3F F1
4C 78

E1 89
8C 16

A4 85
F3 D4





In this instance, the matrix C happens to be of full rank, and hence the associated subcode N(C; HΓ) is the trivial (zero-
dimensional) subspace consisting only of the all-zero codeword. That is, N(C; HΓ) = {0}. However, if the arrangement of
nonzero symbols in HΓ were unfortunate and C failed to be full rank, then N(C; HΓ) would become a one-dimensional
subspace, containing a nonzero codeword. Such a codeword corresponds to an uncorrectable logical error and can
degrade the minimum distance dZ (see (13)).

Therefore, eliminating or carefully controlling UTCBCs u(2) is crucial for ensuring that the minimum distance
remains large.

V Proposed Code Construction
This section proposes an improved construction of the matrices ĤX , ĤZ , HΓ, H∆, HX and HZ , based on the

observations made in the previous section.
As shown in Theorem 3, the conventional codes presented in [31] inevitably contain length-2L cycles C that belong

to the UTCBCs u(k) for k → {0, 1, 2}. Among these, cycles in u(0) and u(1) are harmless to the minimum distance of
the code, as established in Theorem 5. In contrast, as explained in Discussion 1, cycles in UTCBC u(2) may introduce
low-weight codewords, depending on the specific values of the nonzero entries along the cycle, and therefore can degrade
the minimum distance of CΓ. The same argument applies to H∆ by symmetry, by interchanging the roles of HΓ and
H∆.

In a related work [34], the error floor was successfully reduced for a code with L = 8 and rate R = 1/2 by eliminating
all length-2L cycles. However, for the target parameters considered in this paper, namely J = 2, L = 6 and R = 1/3,
length-2L cycles in UTCBCs are unavoidable due to Theorem 3.

V-A Guiding Principles for the Construction
The objective of this section is to refine the conventional construction method of [31] (see Section III) so that the

resulting codes satisfy the following three properties:
1) The matrices ĤX and ĤZ contain no cycles of length less than 2L.
2) All length-2L cycles in ĤX and ĤZ belong to one of the UTCBCs u(k) with k → {0, 1, 2}.
3) For all length-2L cycles C belonging to the UTCBC u(2) in HΓ and H∆, the null spaces N(C; HΓ) and N(C; H∆)

are equal to {0}, respectively. In other words, each such cycle C must have full rank L (see Discussion 1).
Although eliminating all length-12 cycles requires L ≥ 8 (see Theorem 3), our goal is to achieve robust performance
even when L = 6 by carefully managing the structure and impact of UTCBCs.

In this section, we explicitly construct permutations f and g, along with the associated matrices ĤX , ĤZ , HΓ,
and H∆. Our goal is not merely to construct a single pair (ĤX , ĤZ) that satisfies the required conditions, but rather
to randomly sample such pairs from the space of all valid constructions. This randomized approach is essential for
harnessing the performance advantages of LDPC codes viewed as random codes [9].

Figure: If a cycle of length 2ℓ is rank-deficient, then a
cycle codeword of weight ℓ exists.

2Kasai, Hagiwara, Imai, and Sakaniwa, IEEE Trans. Information Theory, 2011.
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Permutation-Matrix-Based Code Construction

We base our code design on the following procedure1.

1. Prepare P × P binary commuting permutation matrices {fi}L/2−1
i=0 and {gi}L/2−1

i=0 :

figj = gjfi for all i, j.

2. Construct binary base matrices ĤX and ĤZ by arranging fi and gi in a cyclic manner, as
illustrated below. Example with J = 2 and L = 8:

ĤX =

(
f0 f1 f2 f3 g0 g1 g2 g3
f3 f0 f1 f2 g3 g0 g1 g2

)
,

ĤZ =

(
f−1
0 f−1

3 f−1
2 f−1

1 g−1
0 g−1

3 g−1
2 g−1

1

f−1
1 f−1

0 f−1
3 f−1

2 g−1
1 g−1

0 g−1
3 g−1

2

)
.

With this choice, they become orthogonal: ĤXĤT
Z = 0. The task of this study is to select {fi}

and {gi} so that ĤX and ĤZ contain no cycles of length less than 16.
3. Non-binarize step: choose the Fq-valued entries of HX and HZ so that they have the same support

(positions of nonzero entries) as ĤX and ĤZ , respectively, and satisfy the orthogonality condition

HXHT
Z = 0.

1Komoto and Kasai, to appear, npj Quantum Information, 2025. 5 / 11



Restrictions on {fi} and {gi} in Code Construction

1. Commutativity condition for orthogonality:
figj = gjfi

2. Non-commutativity condition:
Any 2× 3 commuting submatrix always
contains a 12-cycle. Therefore, {fi} and {gi}
must be non-commuting within each set.

3. Use affine permutation matrices (APM): CPM
vaiolates non-commutativity condition.
Attempt to construct codes with girth 16 with
general permutation matrices failed due to
huge search space and high complexity.

Code Construction

1. Use APM-LDPC Matrices.
Affine permutation matrices (APMs) offer
greater randomness than circulant permutation
matrices (CPMs), leading to better code
diversity.

APM CPM
c(r) = 4r + 1 c(r) = r + 5

f0 f1 f2 f3 g0 g1 g2 g3
f0 – 0 0 0 1 1 1 1
f1 0 – 0 0 1 1 1 1
f2 0 0 – 0 1 1 1 1
f3 0 0 0 – 1 1 1 1
g0 1 1 1 1 – 0 0 0
g1 1 1 1 1 0 – 0 0
g2 1 1 1 1 0 0 – 0
g3 1 1 1 1 0 0 0 –

Legend: 1 commute, 0 non-commute, – diagonal.

Figure: Commutation relations among f0, . . . , f3 and
g0, . . . , g3.

4
4M. P. C. Fossorier, ”Quasicyclic low-density parity-check codes from circulant permutation matrices,” in IEEE

Transactions on Information Theory, 2004.

c(r), r ∈ ZP , P = 15

Permutation-Matrix-Based Code Construction

We base our code design on the following procedure1.
1. Let {fi}L−1

i=0 and {gi}L−1
i=0 be binary P × P permutation matrices, chosen so that

figj = gjfi for all i, j.

2. Construct binary JP × LP matrices ĤX and ĤZ by arranging fi and gi in a cyclic manner, as
illustrated below. Example with J = 2 and L = 8:

ĤX =

(
f0 f1 f2 f3 g0 g1 g2 g3
f3 f0 f1 f2 g3 g0 g1 g2

)
,

ĤZ =

(
f−1
0 f−1

3 f−1
2 f−1

1 g−1
0 g−1

3 g−1
2 g−1

1

f−1
1 f−1

0 f−1
3 f−1

2 g−1
1 g−1

0 g−1
3 g−1

2

)
.

With this choice, they become orthogonal: ĤXĤT
Z = 0. The task of this study is to select {fi}

and {gi} so that ĤX and ĤZ contain no cycles of length less than 16.
3. Non-binarize step: choose the Fq-valued entries of HX and HZ so that they have the same support

(positions of nonzero entries) as ĤX and ĤZ , respectively, and satisfy the orthogonality condition

HXHT
Z = 0.

1Komoto and Kasai, to appear, npj Quantum Information, 2025.

f0 f1 f2 f3 g0 g1 g2 g3
f0 – 0 0 0 1 1 1 1
f1 0 – 0 0 1 1 1 1
f2 0 0 – 0 1 1 1 1
f3 0 0 0 – 1 1 1 1

g0 1 1 1 1 – 0 0 0
g1 1 1 1 1 0 – 0 0
g2 1 1 1 1 0 0 – 0
g3 1 1 1 1 0 0 0 –

Legend: 1 commute, 0 non-commute, – diagonal.

4M. P. C. Fossorier, IEEE Transactions on Information Theory, 2004.
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Progressive Random Code Construction Algorithm (target girth 16)

Select APMs {fi}L/2−1
i=0 , {gi}L/2−1

i=0 one by one by generating random candidates.
For each candidate, check the following three conditions:

Commutativity between fi and gj ,

Non-commutativity within {fi} and within {gi},
No cycles shorter than 16 in base matrices ĤX and ĤZ .

If a candidate fails any of these conditions, reject it and generate a new one.

Example: APMs for P = 12, 600, J = 2, L = 8, R = 1/2, n = 806, 400, girth= 16

ĤX =

(
f0 f1 f2 f3 g0 g1 g2 g3
f3 f0 f1 f2 g3 g0 g1 g2

)
,

ĤZ =

(
f−1
0 f−1

3 f−1
2 f−1

1 g−1
0 g−1

3 g−1
2 g−1

1

f−1
1 f−1

0 f−1
3 f−1

2 g−1
1 g−1

0 g−1
3 g−1

2

)
.

f0(x) = 3151X + 7075, f1(x) = 9451X + 6495, f2(x) = 7351X + 1295, f3(x) = 10501X + 3540

g0(x) = 6301X + 5178, g1(x) = 5041X + 9360, g2(x) = X + 4584, g3(x) = 7561X + 5784

7 / 11
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Non-commutativity within {fi} and within {gi},
No cycles shorter than 16 in base matrices ĤX and ĤZ .

If a candidate fails any of these conditions, reject it and generate a new one.

Example: APMs for P = 12, 600, J = 2, L = 8, R = 1/2, n = 806, 400, girth= 16

ĤX =

(
f0 f1 f2 f3 g0 g1 g2 g3
f3 f0 f1 f2 g3 g0 g1 g2

)
,

ĤZ =
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f−1
0 f−1

3 f−1
2 f−1

1 g−1
0 g−1

3 g−1
2 g−1

1

f−1
1 f−1

0 f−1
3 f−1

2 g−1
1 g−1

0 g−1
3 g−1

2

)
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ĤZ =

(
f−1
0 f−1

3 f−1
2 f−1

1 g−1
0 g−1

3 g−1
2 g−1

1

f−1
1 f−1

0 f−1
3 f−1

2 g−1
1 g−1

0 g−1
3 g−1

2

)
.

f0(x) = 3151X + 7075, f1(x) = 9451X + 6495, f2(x) = 7351X + 1295, f3(x) = 10501X + 3540

g0(x) = 6301X + 5178, g1(x) = 5041X + 9360, g2(x) = X + 4584, g3(x) = 7561X + 5784

7 / 11



BP decoding

Non-binarized matrices: HX and HZ

Measure syndromes:

s = HZx, t = HXz

BP iteratively and simultaneously estimates estimates
x̂ and ẑ at each iteration.

Error correction is regarded as successful if and only if

x+ x̂ ∈ C⊥
X and z + ẑ ∈ C⊥

Z .

In our experiments, whenever decoding was successful, we
always observed x+ x̂ = 0 and z + ẑ = 0. On the other
hand, when decoding failed, wH(x+ x̂) and wH(z + ẑ)
are propotional to n. This indicates that the observed
errors are not due to the error floor, and therefore no
additional post-processing after BP is required.

Towards Practical Quantum Error Correction: Near-Optimal
Performance and Floor Mitigation via Non-Binary LDPCCodes

A Review of Recent Developments in
Quantum Error Correction Using Non-Binary LDPC Codes

Kenta Kasai (Science Tokyo)

Summary
Recent studies [1, 2, 3, 4] have demonstrated
that binary CSS codes constructed from Fq-
valued LDPC codes can achieve decoding per-
formance close to the hashing bound over the
depolarizing channel, when joint belief propaga-
tion (BP) decoding is employed. Notably, this
high performance is attained while maintaining
decoding complexity proportional to the code
length.

Background
Conventional quantum LDPC codes have suf-
fered from the following drawbacks:

Low code rate,
Lack of scalability,
Absence of a threshold phenomenon,
High error floors,
Poor decoding thresholds,
Heavy post-processing required after BP
decoding.

In sharp contrast, classical coding theory is
highly mature, and such issues have long been
resolved in classical LDPC codes. Nevertheless,
quantum LDPC codes still face these challenges.

Code Construction
1. Use APM-LDPC Matrices

Affine permutation matrices (APMs) offer
greater randomness than circulant
permutation matrices (CPMs), leading to
better code diversity.

APM CPM
c(r) = 4r + 1 c(r) = r + 5

2. Avoid Short Cycles
The rich algebraic structure of APMs
facilitates the elimination of short cycles in
the Tanner graph, which is critical for
improving decoding performance.

3. Choose Fq entries to increase the minimum
distance.
Codes defined over Fq tend to achieve a
larger minimum distance, enhancing their
error correction capability.

Figure 1. Example of parity-check matrices HZ and HX

over Fq (q = 256). Column weight two.

Joint BP Decoding Algorithm
1. Measure the syndromes:

s = HZx and t = HXz.

2. Perform joint BP decoding to iteratively
estimate the X and Z noise vectors (x̂, ẑ)
such that

s = HZx̂ and t = HXẑ.

require only O(Jq) operations per message. Since performance improves by increasing P , and assuming q is fixed, the
overall computational complexity is proportional to the number of physical qubits n = ePL. ex:030406_16May25
Example 7. Based on the 16→ 48 binary matrices ĤX and ĤZ given in Example 3, we construct the corresponding
Fq-valued matrices HΓ and H∆ using the Komoto–Kasai construction. These matrices are are used to draw the factor
graph associated with Eq. (12), as shown in Fig. 1. The Tanner graphs on the left and right correspond to (ĤZ , H∆)
and (ĤX , HΓ), respectively. The edges are colored according to the classification introduced in Example 3. In addition,
the edges that form the cycle included in the unavoidable TCBC presented in Example 5 are drawn with thicker lines.
Each side contains 16 parity-check nodes. The variable nodes representing the noise variables ξj and ζj are also placed
on each side, with 48 nodes per side. The central factor nodes represent the joint distribution p(ξj , ζj) of the noise
variables. The directions of the messages passed along the edges are indicated at the bottom of the graph. !

[
)

j δijξj = σi] ξj p(ξj , ζj) ζj [
)

j γijζj = τi]

↑↑↑↑↑↑↓
ν(!),X

ji (ξj)
↑↑↑↑↑↑↓
λ(!),X

j (ξj)
←↑↑↑↑↑↑
λ(!),Z

j (ξj)
←↑↑↑↑↑↑
ν(!),Z

ji (ξj)
←↑↑↑↑↑↑
µ(!),X

ij (ξj)
←↑↑↑↑↑↑
κ(!),X

j (ξj)
↑↑↑↑↑↑↓
κ(!),Z

j (ξj)
↑↑↑↑↑↑↓
µ(!),Z

ij (ξj)

Fig. 1. Color-coded factor graph corresponding to blockwise-decomposed ĤZ and ĤX adjacency matrices.025851_16May25

VI-C Classification of Noise Estimation Errors Causing the Error Floor
図 2で、[5]の方法で構成された符号の SP復号の復号性能を実線で示した。L = 8, R = 0.5以上に対しては、高いエラーフロアが見られなず、ハッシング限界に近い性能を示している。一方、L = 6, R = 1/3に対しては、符号長を大きくするにしたがって、高いエラーフロアが現れて来てしまっている。エラーフロアの典型的な性質を紹介するために、次の特徴量を定義する。

Definition 2 (エラーフロアの特徴量、過去 d回までで推定ノイズとそのシンドロームの変化). For the output of the
sum-product algorithm at the *th iteration, the set of indices at which the estimated noise ξ̂

(!) is incorrect is defined

s x zp(x, z) t

Figure 2. Factor graph of joint BP

3. Decoding is considered successful if the true
error (x, z) and the estimated error (x̂, ẑ)
satisfy

x + x̂ 2 C?
X and z + ẑ 2 C?

Z .

4. If the joint BP decoder fails to find an
estimate (x̂, ẑ) satisfying

s = HZx̂ and t = HXẑ,

and it is suspected that the decoder is
trapped in a union of a small number of short
cycles.

Post-processing
1. Estimate the set of trapping cycles. This can
be done with a complexity independent of the
code length by exploiting the structure
formed by the shortest cycles.

2. For estimating X-noise, solve a linear system
involving the syndrome and the noise vector
associated with the cycles. This is done using
a submatrix of HZ restricted to the set of
column positions K corresponding to the
estimated cycles:

s = (HZ)KxK + (HZ)KxK

= (HZ)KxK + (HZ)Kx̂K

The size of K is independent of the code
length, and the system can be solved with
computational complexity O(|K|3). In our
case, |K|  12, even for long codes.

Example: When the decoder is trapped in the
blue cycle in Fig. 1, the following linear
system over Fq (q = 256) must be solved.

0

BBBBBB@

7C E5
12 15

3E 18
1D F6

C2 0E
6F 90

1

CCCCCCA

0

BBBBBB@

x0
x12
x17
x24
x34
x40

1

CCCCCCA
=

0

BBBBBB@

28
39
18
F0
7E
5F

1

CCCCCCA
.

3. Similarly, estimate the Z-noise vector by
solving the corresponding linear system.

Performance Evaluation

Figure 3. A threshold phenomenon close to the hashing
bound is observed over a wide range of code rates and
large block lengths, without any sign of an error floor.
Minimum distance: Prop. code dmin  14.

Figure 4. Physical error rate pD required to achieve FER =
10�4. The results demonstrate that the proposed method
achieves performance close to the hashing bound.

Conclusion
Our proposed approach successfully resolves all
of the major issues associated with conventional
quantum LDPC codes:

higher code rates,
scalability,
threshold-like behavior,
an unobservable error floor in simulations,
improved decoding thresholds, and
ultra-light post-processing.

These results suggest that it is possible to ap-
proach the level of performance achieved in
classical LDPC codes, even within the con-
straints of the quantum setting.
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Minimum Distance Estimation: Upper Bound

Minimum distance dmin

dX = min
{
wH(c) | c ∈ CX\C⊥

Z

}
dZ = min

{
wH(c) | c ∈ CZ\C⊥

X

}
dmin = min {dX , dZ} ,

We calculate the bit-level weight distribution of codewords formed
from the shortest cycles.

1. Enumerate all shortest cycle codewords in CX \ C⊥
Z and CZ \ C⊥

X .

2. AX(w) and AZ(w): Count the number of such codewords of
weight w, respectively.

3. From the table, we observe that the minimum bitwise weight among
these codewords is 14.

A. Computing Upper Bound of Minimum Distance
For the proposed code (CX , CZ) constructed with

girth 16, we first enumerated all shortest cycles. For
example, consider a submatrix S of Fq-valued parity-check
matrix HΓ corresponding to a length-16 cycle, such as the
following:

S =





γ11 γ12 0 0 0
0 γ21 γ22 0 0

0 0 . . . . . . 0
0 0 0 γ71 γ72

γ82 0 0 0 γ81




.

Let v → F8
q be a nonzero vector in the null space of

S. By padding zeros at positions outside the columns of
S, v can be embedded into a length-PL vector over Fq,
which belongs to CX . The null space of S has dimension
either 0 or 1. In the former case, it contains only the
zero vector; in the latter case, it contains q − 1 nonzero
codewords. In total, we found 7190 and 7256 such length-
16 cycles whose corresponding submatrices have null space
dimension 1 in CX and CZ , respectively. By computing
the bitwise weights of such codewords that do not belong
to C→

Z , we obtained the weight distribution AX(w), as
listed in Table III. Similarly, we computed AZ(w) from the
null spaces of submatrices of H∆ corresponding to length-
16 cycles. For comparison, we also computed the weight
distributions AX(w) and AZ(w) for the conventional codes
(CX , CZ) constructed with girth 12. From the table, we
obtain upper bounds on the minimum bitwise distances of
14 for the proposed code and 9 for the conventional code.

From the table, we observe that the minimum bitwise
weight among these codewords is 14. However, this upper
bound on the minimum distance may not be exact, since
it is possible that other codewords in CX―arising from
longer cycles or combinations of cycles in the Tanner graph―have bitwise weights smaller than those enumerated
here, even though their weights in Fq are at least 9.
Nevertheless, due to the use of a relatively large finite field
size q, we believe that this upper bound is likely to be tight.

TABLE II
Weight distribution of codewords formed from the

shortest cycles. Here, AX(w) and AZ(w) denote the number
of codewords of weight w in CX \ C→

Z and CZ \ C→
X ,

respectively.

Prop. Conv.
w AX(w) AZ(w) w AX(w) AZ(w)
14 0 2 9 0 7
15 7 4 10 3 10
16 19 16 11 23 36
17 64 74 12 115 117
...

...
...

...
...

...
50 4 7 38 17 19
51 1 1 39 5 3
52 0 1 40 0 2

total 255→ 7192 255→ 7256 total 255→ 3155 255→ 3063

TABLE III
Weight distribution of codewords formed from the

shortest cycles. Here, AX(w) and AZ(w) denote the number
of codewords of weight w in CX \ C→

Z and CZ \ C→
X ,

respectively.

Prop. Conv.
w AX(w) AZ(w) w AX(w) AZ(w)
14 0 2 9 0 7
15 7 4 10 3 10
16 19 16 11 23 36
17 64 74 12 115 117
18 180 243 13 326 393
19 517 545 14 1012 976
20 1395 1394 15 2512 2413
21 3198 3361 16 5570 5426
22 6557 6580 17 10975 10905
23 12432 12604 18 19321 18577
24 22065 22441 19 31644 30583
25 36562 37114 20 46466 44906
26 56105 57037 21 62938 60967
27 80796 81754 22 78365 75967
28 108252 109732 23 89540 86380
29 136363 137293 24 92775 90397
30 161125 162252 25 89613 87421
31 177894 179259 26 79558 77923
32 184555 185588 27 65163 63004
33 179963 180763 28 48834 47345
34 164748 166054 29 33761 33019
35 141673 142321 30 21240 20708
36 113975 115282 31 12677 11926
37 86629 87555 32 6664 6374
38 61398 62078 33 3160 3139
39 41178 41603 34 1436 1340
40 25493 25983 35 540 527
41 14795 15334 36 205 194
42 8001 8279 37 67 61
43 4183 4287 38 17 19
44 1946 1997 39 5 3
45 858 887 40 0 2
46 338 340 41 0 0
47 127 150 42 0 0
48 46 46 43 0 0
49 8 19 44 0 0
50 4 7 45 0 0
51 1 1 46 0 0
52 0 1 47 0 0
50 4 7 38 17 19
51 1 1 39 5 3
52 0 1 40 0 2

total 255→ 7192 255→ 7256 total 255→ 3155 255→ 3063

V. Conclusion and Future Work

We proposed a method for constructing quantum LDPC
codes with Tanner graph girth 16 using affine permutation
matrices and a randomized sequential selection process.
Unlike conventional constructions limited to girth 12, our
method effectively eliminates short cycles that degrade
decoding performance.

Numerical experiments showed that the proposed codes
reduce the number of low-weight codewords, leading to a
substantial improvement in the error floor region, although
with slightly inferior performance in the waterfall region.
The resulting CSS codes achieve a higher upper bound on
the minimum distance, which we conjecture to be tight.

Overall, our findings suggest that exploiting affine per-
mutation matrices combined with randomized construc-
tion is an effective strategy to mitigate short cycles and
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Numerical Result:

For the code with R = 1/2 and L = 8, we reduced
the error floor using only BP decoding without any
post-processing.

No error floor has been observed down to a frame
error rate of at least 10−6.

The block length is close to one million, which is
extremely large.
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with proposed method (red) for R = 1/2.
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Conclusions and Future work

We successfully constructed long quantum LDPC codes with
girth 16 and rate 1/2, whose minimum distance does not
exceed 14, achieving a deep error floor without
post-processing.

We plan to further increase the minimum distance by
modifying the non-binary entries of cycle codewords associated
with 16-cycles.

We plan to analyze the error floor using weight distribution.

We also aim to further lower the error floor by applying
post-processing, although observing the error floor remains
challenging.
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