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Background

Recent studies1 have reported that binary CSS
codes based on Fq-valued LDPC codes2 exhibit
near-hashing-bound decoding performance
over the depolarizing channel using joint BP
decoding.

However, for codes with a low coding rate R,
a significant error floor has been observed.

This study aims to mitigate or eliminate the
error floor―ideally achieving a target frame
error rate (FER) of 10−4 near the hashing
bound.
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Figure: Joint BP peformance of QEC with
non-binary LDPC codes with Fq (q = 28).

1Komoto and Kasai, under minor revision, npj Quantum Information, 2025.
2Kasai, Hagiwara, Imai and Sakaniwa, IEEE Trans. Information Theory, 2011.



Code Construction

We employ orthogonal Fq-valued
parity-check matrices HX and HZ with
column weight two and girth 12.

The matrices HX and HZ are constructed
to be orthogonal by leveraging the
structure of circulant permutation
matrices or affine permutation
matrices.

By using companion matrices, the
matrices HX and HZ can also be
regarded as binary parity-check matrices.
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Background
Previous studies [1, 2] have shown that quantum
error-correcting codes based on Fq-valued LDPC
codes exhibit near-hashing-bound decoding
performance over the depolarizing channel using joint
belief propagation (BP) decoding (see Fig. 1).
However, for codes with low coding rate R and large
blocklength n, a significant error floor was observed
(see Fig. 1).
In the error floor regime, the joint BP algorithm was
trapped in a small set of short cycles on the Tanner
graph, resulting in decoding failures on a small number
of noise components (see Fig. 4).

1. A previous study [3] addressed this issue for R = 1/2
by designing codes that avoid such short cycle
structures.

2. This work aims to resolve the error floor problem even
for codes with R = 1/3!
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
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Each nonzero entry such as 0F represents the field element α15, where α is a fixed primitive element of Fq, and the
exponent is the decimal equivalent of the hexadecimal value. The nonzero support (positions) of HΓ and H∆ matches
those of the corresponding binary matrices ĤX and ĤZ . The matrices HΓ and H∆ are constructed to be orthogonal.
For example, let us examine the orthogonality between the 7th row of HΓ and the 5th row of H∆. These rows contain
the following intersecting non-zero entries:

HΓ[7, ·] = (α200,α238), H∆[5, ·] = (α62,α24).
Then, their inner product is given by:

α200 · α62 + α238 · α24 = α(200+62) mod 255 + α(238+24) mod 255 = α7 + α7 = 0.

This confirms that the two rows are orthogonal over F256. !

III-C Construction of HX and HZ

In this section, we construct orthogonal F2-valued matrices HX and HZ of size m→n from the orthogonal Fq-valued
matrices HΓ and H∆ of size M →N obtained in the previous section, where n = eN and m = eM . This construction
follows the method used in [30] and [31]. The matrices HX and HZ are constructed from HΓ and H∆ as follows. The
theoretical justification and proofs, which were omitted in [30] and [31], are provided in the appendices.

The companion matrix A(γ) ∈ Fe→e
2 for γ ∈ Fq are defined in Appendices A. Using the mapping A, we construct

the binary parity-check matrices (HX , HZ) as follows:
HX =

(
A(γi,j)

{
, HZ =

(
A(δi,j)"{.

From the properties of the companion matrix, it can be verified that (HX , HZ) are orthogonal:
HXH"

Z = O. (11)
A proof of (11) is provided in Appendix C.

We denote by CΓ and C∆ the Fq-linear spaces defined as the null spaces of the matrices HΓ and H∆, respectively:
CΓ = {ξ ∈ FN

q | HΓξ = 0}, C∆ = {ξ ∈ FN
q | H∆ξ = 0}.

Likewise, we denote by CX and CZ the F2-linear spaces defined as the null spaces of the binary matrices HX and HZ ,
respectively:

CX = {x ∈ Fn
2 | HXx = 0}, CZ = {x ∈ Fn

2 | HZx = 0}.

Results

Figure 1. Quantum error correction performance of the conventional
method [2] over the depolarizing channel (pD using Fq-valued LDPC codes
(e = 8, q = 2e). The code parameters are [[n = 2ePL, k = nR, d  10]]. A
clear error floor appears at coding rate R = 1/3.

Figure 2. Performance comparison between the proposed method and the
conventional method [2] (both code construction and decoding). Proposed
code + proposed decoder (red), conventional code + conventional decoder
(blue). Conventional code: [[312000, 104000, 10]]; Proposed code:
[[312000, 104000, 14]], with P = 6500.

Figure 3. Physical error rate pD for achieving FER = 10�4 as a function of
coding rate R. The proposed method achieves performance close to the
hashing bound across a wide range of coding rates.

Conventional Method: Joint BP Decoding
1. Joint BP decoding iteratively
estimates the X/Z noise vectors
(x, z) from the syndromes (s, t).

2. Degeneracy of quantum errors is
not considered; decoding is
declared successful if the
estimated noise matches the true
noise.

3. Even at low noise levels, decoding
occasionally fails—this is the error
floor phenomenon:
(a) In the error floor regime, decoding

failures involved noise affecting no
more than 12 qubits.

(b) These failures were always associated
with being trapped in a set of
length-12 cycles.

4. Goal: Eliminate the error floor!

Figure 4. Factor graph for joint BP decoding: an example of a
length-12 cycle.

Classification of the Three Cycle Types
Let P (C) be the proposition:

P (C) =

Here, (HZ)C denotes the submatrix ofHZ obtained by zeroing out all entries not involved in the
cycle C. We classify the cycle C by examining whether the associated subspace

NC := null((HZ)C) ⇢ CZ

is contained in C?
X
⇢ CZ.

1. If P (C) = true: Then NC = span(H (i)
X
) ⇢ C

?
X
⇢ CZ. This is classified as Type 1: correctable

degenerate errors.
2. If P (C) = false and (HZ)C is rank-deficient: Then NC \ {0} ⇢ CZ \ C?

X
. This is Type 2:

contains uncorrectable errors.
These cycles are problematic; our code construction aims to eliminate them.

3. If P (C) = false and (HZ)C has full rank: Then NC = {0}. This is Type 3: non-degenerate,
identifiable errors.

Proposed Decoding Algorithm
1. Run joint BP decoding. If the estimated noise x̂(`) at iteration ` satisfies the measured
syndrome, i.e.,

ŝ
(`) = HZx̂

(`) = s,

then decoding is successful and the process terminates.
2. From the history of x̂(`) and ŝ(`), estimate the set of cycles {C} in which the decoder is
trapped due to error-floor noise.
(We limit the number of detected cycles to u = 2.)

3. If the cycle set {C} is correctly identified, then the noise outside the cycles should have
been correctly estimated:

x̂{C} = x{C}.

4. Solve the following linear system over the finite field Fq for the unknown noise variables
x{C}:

(HZ){C}x{C} + (HZ){C}x̂{C} = s.

This is a low-dimensional system (number of variables  6u and rank  6u).
If a solution exists, assign any such solution to x̂{C}, and output the total estimated noise:

x̂ := x̂{C} + x̂{C}.

5. If no solution exists, return to step 1 and continue decoding.

Conclusion and Outlook
1. Achieved quantum error correction performance near the hashing bound even at low
coding rates.

2. Next goal: extend to lower rates (i.e., higher noise levels pD).
3. Aim to realize similar performance using binary codes.
4. Explore applications to memory channels and multiple-access quantum communication.
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ŝ
(`) = HZx̂

(`) = s,

then decoding is successful and the process terminates.
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Figure: Parity-check matrics HZ and HX over Fq

(q = 256).



Joint BP decoding

Joint BP decoding is a belief
propagation algorithm that
simultaneously estimates x and z.

Joint BP decoding begins by measuring
the syndromes s and t corresponding to
the noise vectors x and z.

s = HZx and t = HXz.

Joint BP iteratively estimates x̂(ℓ) and ẑ(ℓ)

at each iteration ℓ.

require only O(Jq) operations per message. Since performance improves by increasing P , and assuming q is fixed, the
overall computational complexity is proportional to the number of physical qubits n = ePL. ex:030406_16May25
Example 7. Based on the 16→ 48 binary matrices ĤX and ĤZ given in Example 3, we construct the corresponding
Fq-valued matrices HΓ and H∆ using the Komoto–Kasai construction. These matrices are are used to draw the factor
graph associated with Eq. (12), as shown in Fig. 1. The Tanner graphs on the left and right correspond to (ĤZ , H∆)
and (ĤX , HΓ), respectively. The edges are colored according to the classification introduced in Example 3. In addition,
the edges that form the cycle included in the unavoidable TCBC presented in Example 5 are drawn with thicker lines.
Each side contains 16 parity-check nodes. The variable nodes representing the noise variables ξj and ζj are also placed
on each side, with 48 nodes per side. The central factor nodes represent the joint distribution p(ξj , ζj) of the noise
variables. The directions of the messages passed along the edges are indicated at the bottom of the graph. !

[
)

j δijξj = σi] ξj p(ξj , ζj) ζj [
)

j γijζj = τi]

↑↑↑↑↑↑↓
ν(!),X

ji (ξj)
↑↑↑↑↑↑↓
λ(!),X

j (ξj)
←↑↑↑↑↑↑
λ(!),Z

j (ξj)
←↑↑↑↑↑↑
ν(!),Z

ji (ξj)
←↑↑↑↑↑↑
µ(!),X

ij (ξj)
←↑↑↑↑↑↑
κ(!),X

j (ξj)
↑↑↑↑↑↑↓
κ(!),Z

j (ξj)
↑↑↑↑↑↑↓
µ(!),Z

ij (ξj)

Fig. 1. Color-coded factor graph corresponding to blockwise-decomposed ĤZ and ĤX adjacency matrices.025851_16May25

VI-C Classification of Noise Estimation Errors Causing the Error Floor
図 2で、[5]の方法で構成された符号の SP復号の復号性能を実線で示した。L = 8, R = 0.5以上に対しては、高いエラーフロアが見られなず、ハッシング限界に近い性能を示している。一方、L = 6, R = 1/3に対しては、符号長を大きくするにしたがって、高いエラーフロアが現れて来てしまっている。エラーフロアの典型的な性質を紹介するために、次の特徴量を定義する。

Definition 2 (エラーフロアの特徴量、過去 d回までで推定ノイズとそのシンドロームの変化). For the output of the
sum-product algorithm at the *th iteration, the set of indices at which the estimated noise ξ̂

(!) is incorrect is defined

Figure: Factor graph of joint BP.



Insights into Decoding Failures in the Error Floor Regime

In the error floor regime, joint BP decoding is
sufficient to correctly estimate the noise in
most cases. However, it occasionally fails to do
so.

In such failure cases, the joint BP algorithm
becomes trapped in a union of length-12
cycles on the Tanner graph.

In our experiments, decoding failures in the
error floor regime caused by combined cycles
involving both the X- and Z-side factor graphs
were not observed.

require only O(Jq) operations per message. Since performance improves by increasing P , and assuming q is fixed, the
overall computational complexity is proportional to the number of physical qubits n = ePL. ex:030406_16May25
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Overview of Proposed Decoding Algorithm

1. First, we run joint belief propagation for a sufficiently large number of iterations. In most
cases, this step alone is enough to correctly estimate the noise.

2. However, if joint BP decoding fails―typically due to being trapped in cycles of length 12
―we then proceed to estimate the trapping cycles.

3. Once the trapping cycles are identified, we estimate the remaining undetermined noise by
solving a linear system of equations.



Method: Estimation of Trapping Cycles

At each iteration, we keep track of the
locations where the estimated noise and the
syndrome values have recently changed:

K
(ℓ)
d : Estimated noise that have changed

within the past d iterations

I
(ℓ)
d : Syndromes of the estimated noise that

have changed within the past d iterations

For sufficiently large ℓ and d, it was observed that

K
(ℓ)
d and I

(ℓ)
d tend to cover the columns and

rows of trapping cycles, respectively.

This observation enables us to efficiently identify
the trapping cycles.

TABLE III: Decoding Statistics over Iterations for J = 2, L = 6, P = 6500, N = LP = 39000, M = JP = 13000, pD =
9.435% and d = 8.

Estimation for x Estimation for z

! |K(!)
err | |K(!)

d | |I(!)
err | |I(!)

d | |K(!)
err | |K(!)

d | |I(!)
err | |I(!)

d |
0 14944 0 9689 9689 15017 0 9741 9741
1 13731 4270 8618 10371 13845 4165 8677 10399
2 12875 6986 7676 10631 12959 6864 7791 10656
3 12108 8776 7036 10757 12306 8660 7178 10791
4 11693 10053 6558 10852 11765 10017 6717 10883
5 11297 11035 6221 10907 11370 11022 6304 10941
6 10866 11808 5862 10951 11043 11808 6028 10986
7 10542 12446 5640 10974 10667 12518 5745 11027
8 10300 12950 5464 10044 10364 13119 5537 10141
9 10069 11536 5216 9337 10099 11796 5334 9442
...

...
...

...
...

...
...

...
...

41 466 5682 462 3625 846 5956 684 3755
42 221 5088 204 3167 473 5405 436 3421
43 90 4337 103 2742 227 4822 225 3053
44 15 3633 25 2307 81 4243 95 2664
45 2 2980 2 1856 21 3575 27 2210
46 3 2257 4 1389 5 2882 7 1755
47 2 1595 2 909 0 2197 0 1300
48 2 973 2 565 0 1538 0 897
49 3 538 4 261 0 998 0 531
50 2 250 2 118 0 542 0 264
51 2 101 2 29 0 256 0 108
52 3 19 4 6 0 87 0 30
53 2 6 2 6 0 23 0 7
54 2 6 2 6 0 5 0 0
55 3 6 4 6 0 0 0 0
56 2 6 2 6 0 0 0 0
57 2 6 2 6 0 0 0 0
58 3 6 4 6 0 0 0 0
...

...
...

...
...

...
...

...
...

We define the set of syndrome indices that have changed at least once during the last d iterations as

I(!)
d = {i → [M ] | σ(!→) = H∆ξ

(!→),σ(!→)
i "= σi for some #→ → [#− d, #]}.

Note that among the quantities defined above, the decoder cannot directly observe K(!)
err . In contrast, all the other

variables-K(!)
d , I(!)

err , and I(!)
d -can be computed from the internal state and history of the joint BP decoder.

Table III provides an example of a decoding state transition. The example is based on a code constructed by the
proposed method and decoded using the conventional joint BP algorithm over a depolarizing channel with physical
error rate pD = 9.435%. Further details are provided in Section VII-B. The performance for other values of pD is shown
as the solid blue curve in Fig. 3. The decoder is applied to a code with parameters J = 2, L = 6, and P = 6500, and
aims to estimate both ξ and ζ.

In the estimation of Z-noise vector ζ, the sizes of K(!)
err and I(!)

err both decrease monotonically to zero as the iteration
index # increases. The decoder successfully estimates the noise at iteration # = 47. Although typical cases exhibit
similar success in estimating X-noise vector ξ, this particular example illustrates a rare failure of joint BP decoding to
correctly estimate the noise vector ξ, occurring with probability on the order of 10−2.

In the estimation of ξ, the sizes of K(!)
err and I(!)

err initially decrease monotonically. However, at a certain point, this
decrease stagnates: although the number of incorrect estimates continues to decline, a small number of errors persist
and never vanish, even after additional iterations. In this example, as # increases, both K(!)

d and I(!)
d converge to a

fixed set of size six. Within these sets, the values of K(!)
err and I(!)

err continue to fluctuate across iterations.

K(!)
d = {[4062, 0]L, [10410, 1]L, [13890, 2]L, [25420, 0]R, [31699, 1]R, [35508, 2]R},

I(!)
d = {[2853, 0], [2922, 0], [3490, 0], [6662, 1], [9201, 1], [12902, 1]}.

The numbers in parentheses indicate the corresponding block index for each variable or check node.

Figure: Transition of the joint BP decoding
state over iterations (d = 8).



Method: Post-Processing Algorithm

For estimating X-noise, solve a linear system involving the syndrome s and the noise
vector xK associated with the trapping cycles. This is done using a submatrix of HZ

restricted to the set of column positions K corresponding to the trapping cycles:

s = (HZ)KxK + (HZ)K x̂K

The size of K is independent of the code length, and the system can be solved by
Gaussian elimination with computational complexity O(|K|3).
Similarly, estimate the Z-noise vector by solving the corresponding linear system.

Error correction is regarded as successful if and only if

x+ x̂ ∈ C⊥
X and z + ẑ ∈ C⊥

Z .



Results

The error floor was mitigated to some extent.

A relatively high error floor still remained.

The remaining error floor is attributed to the
presence of length-12 cycles that contain
non-zero codewords in

CZ \ C⊥
X and CX \ C⊥

Z .

These codewords lead to logical errors in the
decoding process.
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Figure: Comparison: joint BP (solid) with
joint BP+post-processin (dashed)



Recent Result: Code Construction to Avoid Small Logical Errors3

In binary codes, any cycle with column weight
2 always contains a nonzero codeword.
However, this is not necessarily the case in
the non-binary setting.

By ensuring that the determinant of each cycle
is nonzero, we can eliminate nonzero
codewords from the cycles.

We modified the Fq-valued entries in the
length-12 cycles so that the corresponding
codewords are necessarily the zero codeword.

As a result, the error floor disappeared at
least down to FER = 10−4.
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Figure: Comparison: Conventional method
(blue) with proposed method (red).

3K. Kasai, “Quantum error correction exploiting degeneracy to approach the hashing bound,”
arXiv:2506.15636, 2025.



Conclusions and Future work

We successfully constructed binary CSS codes that scale
well across a wide range of coding rate, achieving
FER = 10−4 by using non-binary LDPC codes.

To further approach the hashing bound, we aim to
incorporate techniques originally developed for
classical codes, including:

Spatial Coupling
Multiplicative Repetition
Generalized LDPC Codes

Currently, no upper bound on the girth of cycles leading
to logical errors is known. This may open the possibility
for applying density evolution analysis in future work.

If you have ideas related to these directions, I would be
very happy to hear them.
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Figure: Physical Error Rate required
for FER=10−4 vs. Coding Rate


