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@ Recent studies! have reported that binary CSS o
codes based on Fg-valued LDPC codes? exhibit ‘ ‘ ‘
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@ However, for codes with a low coding rate R, & '} 4
a significant error floor has been observed. oo b ]
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@ This study aims to mitigate or eliminate the 10° ‘ PRIt
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error floor—ideally achieving a target frame Physical Erfor Rate py of Depolarizing Channe

error rate (FER) of 10~* near the hashing
bound. Figure: Joint BP peformance of QEC with
non-binary LDPC codes with F, (¢ = 2%).

'Komoto and Kasai, under minor revision, npj Quantum Information, 2025.
2Kasai, Hagiwara, Imai and Sakaniwa, IEEE Trans. Information Theory, 2011.



Code Construction

e We employ orthogonal F,-valued w 7 0 : C T - o
parity-check matrices Hx and Hz with L o o “ e ="
column weight two and girth 12. _— ] D R ) — “

@ The matrices Hx and Hy are constructed S PO PR N M
to be orthogonal by leveraging the - - : e : . M
structure of circulant permutation B B T T I
matrices or affine permutation B N O e I e R
matrices. = ol | o = o] wl T 7 W =

@ By using companion matrices, the B L = R P
matrices Hyx and Hz can also be . " R E A

regarded as binary parity-check matrices. Figure: Parity-check matrics Hz and Hx over I,

(g = 256).



Joint BP decoding

o Joint BP decoding is a belief
propagation algorithm that
simultaneously estimates x and z.

@ Joint BP decoding begins by measuring
the syndromes s and t corresponding to
the noise vectors z and z.

s=Hzx and t = Hxz.

@ Joint BP iteratively estimates 2 and 20
at each iteration /.
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Figure: Factor graph of joint BP.




Insights into Decoding Failures in the Error Floor Regime

@ In the error floor regime, joint BP decoding is
sufficient to correctly estimate the noise in
most cases. However, it occasionally fails to do
so.

@ In such failure cases, the joint BP algorithm
becomes trapped in a union of length-12
cycles on the Tanner graph.

@ In our experiments, decoding failures in the
error floor regime caused by combined cycles
involving both the X- and Z-side factor graphs
were not observed.

Figure: Factor graph of joint BP.



Overview of Proposed Decoding Algorithm

1. First, we run joint belief propagation for a sufficiently large number of iterations. In most
cases, this step alone is enough to correctly estimate the noise.

2. However, if joint BP decoding fails—typically due to being trapped in cycles of length 12
—we then proceed to estimate the trapping cycles.

3. Once the trapping cycles are identified, we estimate the remaining undetermined noise by
solving a linear system of equations.



Method: Estimation of Trapping Cycles

@ At each iteration, we keep track of the Eimton o 2 pition o+
locations where the estimated noise and the Vit a1 T v T 1o ) T i [’
14944 0 9689 9689 15017 0 9741 9741
syndrome values have recently changed:

3

0

1 13731 4270 8618 | 10371 13845 4165 8677 | 10399
2 12875 6986 7676 | 10631 12959 6864 7791 | 10656
3 12108 8776 7036 | 10757 12306 8660 TI78 | 10791
4 11693 | 10053 | 6558 10852 11765 10017 | 6717 | 10883
5 11297 | 11035 | 6221 10907 11370 | 11022 | 6304 10941
6 10866 | 11808 | 5862 | 10951 11043 | 11808 | 6028 | 10986
7 10542 | 12446 | 5640 | 10974 10667 | 12518 | 5745 | 11027
8 10300 | 12950 | 5464 | 10044 10364 | 13119 | 5537 | 10141
9 10069 | 11536 | 5216 9337 10099 | 11796 | 5334 9442

Kg) :  Estimated noise that have changed
within the past d iterations

41 466 5682 462 3625 846 5956 684 3755

1" . Syndromes of the estimated noise that | om | | o | e | | s | | s
44 15 3633 25 2307 81 4243 95 2664

have changed within the past d iterations bl | S i B i | R O R e

47 2 1595 2 909 0 2197 0 1300

48 2 973 2 565 0 1538 0 897

49 3 5?8 4 261 0 298 0 551
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@ For sufficiently large £ and d, it was observed that o | - N I I B
(z) (Z) 2; 2 (j 2 6 0 5 0 0
K, and I;” tend to cover the columns and | T | O O O
. . 57 2 6 2 6 0 0 0 0

rows of trapping cycles, respectively. sl o3 |6 | 4| 6 | o | o o] o0

@ This observation enables us to efficiently identify
the trapping cycles. Figure: Transition of the joint BP decoding
state over iterations (d = 8).



Method: Post-Processing Algorithm

@ For estimating X-noise, solve a linear system involving the syndrome s and the noise
vector x - associated with the trapping cycles. This is done using a submatrix of Hz
restricted to the set of column positions K corresponding to the trapping cycles:

s=(Hz)gzy + (Hz)gix

The size of K is independent of the code length, and the system can be solved by
Gaussian elimination with computational complexity O(|K|3).

@ Similarly, estimate the Z-noise vector by solving the corresponding linear system.

@ Error correction is regarded as successful if and only if
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@ The error floor was mitigated to some extent. )
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@ A relatively high error floor still remained. ‘ ‘ ‘
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@ The remaining error floor is attributed to the P b N 8
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presence of length 12. cycles that contain g 5 g S g
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Cz\Cx and Cx\C3z.
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Figure: Comparison: joint BP (solid) with
joint BP+post-processin (dashed)



Recent Result: Code Construction to Avoid Small Logical Errors®

@ In binary codes, any cycle with column weight
2 always contains a nonzero codeword.
However, this is not necessarily the case in
the non-binary setting.

@ By ensuring that the determinant of each cycle
is nonzero, we can eliminate nonzero
codewords from the cycles.

e We modified the Fy-valued entries in the
length-12 cycles so that the corresponding
codewords are necessarily the zero codeword.

@ As a result, the error floor disappeared at
least down to FER = 10
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Figure: Comparison: Conventional method
(blue) with proposed method (red).

3K. Kasai, “Quantum error correction exploiting degeneracy to approach the hashing bound,”

arXiv:2506.15636, 2025.



Conclusions and Future work

@ We successfully constructed binary CSS codes that scale
well across a wide range of coding rate, achieving 0s0
FER = 10~ by using non-binary LDPC codes.

@ To further approach the hashing bound, we aim to
incorporate techniques originally developed for
classical codes, including:

e Spatial Coupling 030

] Multiplicative Repetition 20 5 001 002 003 004 005 006 007 008 005 0.1 011 0.12
. Physical Error Rate py,

o Generalized LDPC Codes " o

o Currently, no upper bound on the girth of cycles leading Figure: Physical Error Rate required
to logical errors is known. This may open the possibility for FER=10"* vs. Coding Rate
for applying density evolution analysis in future work.
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@ If you have ideas related to these directions, | would be
very happy to hear them.



